基于海洋捕食者算法的极限学习机(ELM)回归预测-附代码

news2024/9/30 23:23:18

基于海洋捕食者算法的极限学习机(ELM)回归预测

文章目录

  • 基于海洋捕食者算法的极限学习机(ELM)回归预测
    • 1.极限学习机原理概述
    • 2.ELM学习算法
    • 3.回归问题数据处理
    • 4.基于海洋捕食者算法优化的ELM
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:本文利用海洋捕食者算法对极限学习机进行优化,并用于回归预测

1.极限学习机原理概述

典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量 。 为不失一般性,设输 入层与隐含层间的连接权值 w 为:
w = [ w 11 w 12 . . . w 1 , n w 21 w 22 . . . w 2 n . . . w l 1 w l 2 . . . w l n ] (1) w =\left[\begin{matrix}w_{11}&w_{12}&...&w_{1,n}\\ w_{21}&w_{22}&...&w_{2n}\\ ...\\ w_{l1}&w_{l2}&...&w_{ln} \end{matrix}\right]\tag{1} w= w11w21...wl1w12w22wl2.........w1,nw2nwln (1)
其中, w n w_n wn表示输入层第 i i i个神经元与隐含层第 j j j个神经元间的连接权值。

设隐含层与输出层间的连接权值 , 为 β \beta β:
β = [ β 11 β 12 . . . β 1 m β 21 β 22 . . . β 2 m . . . β l 1 β l 2 . . . β l m ] (2) \beta =\left[\begin{matrix} \beta_{11}&\beta_{12}&...&\beta_{1m}\\ \beta_{21}&\beta_{22}&...&\beta_{2m}\\ ...\\ \beta_{l1}&\beta_{l2}&...&\beta_{lm} \end{matrix}\right] \tag{2} β= β11β21...βl1β12β22βl2.........β1mβ2mβlm (2)
其中,自 β j k \beta_{jk} βjk表示隐含层第 j 个神经元与输出层第 k个神经元间的连接权值。

设隐含层神经元的阈值值 b 为:
b = [ b 1 b 2 . . . b l ] (3) b =\left[\begin{matrix}b_1\\ b_2\\ ...\\ b_l \end{matrix}\right]\tag{3} b= b1b2...bl (3)
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
X = [ x 11 x 12 . . . x 1 Q x 21 x 22 . . . x 2 Q . . . x n 1 x n 2 . . . x n Q ] (4) X =\left[\begin{matrix}x_{11}&x_{12}&...&x_{1Q}\\ x_{21}&x_{22}&...&x_{2Q}\\ ...\\ x_{n1}&x_{n2}&...&x_{nQ} \end{matrix}\right]\tag{4} X= x11x21...xn1x12x22xn2.........x1Qx2QxnQ (4)

KaTeX parse error: Undefined control sequence: \matrix at position 11: Y =\left[\̲m̲a̲t̲r̲i̲x̲{y_{11},y_{12},…

设隐含层神经元的激活函数为 g(x),则由图1 可得, 网络的输出 T 为:
T = [ t 1 , . . , t Q ] m ∗ Q , t j = [ t 1 j , . . . , t m j ] T = [ ∑ i = 1 t β i 1 g ( w i x j + b i ) ∑ i = 1 t β i 2 g ( w i x j + b i ) . . . ∑ i = 1 t β i m g ( w i x j + b i ) ] m ∗ 1 , ( j = 1 , 2 , . . . , Q ) (6) T = [t_1,..,t_Q]_{m*Q},t_j = [t_{1j},...,t_{mj}]^T =\left[\begin{matrix}\sum_{i=1}^t\beta_{i1}g(w_ix_j + b_i)\\ \sum_{i=1}^t\beta_{i2}g(w_ix_j + b_i)\\ ...\\ \sum_{i=1}^t\beta_{im}g(w_ix_j + b_i) \end{matrix}\right]_{m*1},(j=1,2,...,Q)\tag{6} T=[t1,..,tQ]mQ,tj=[t1j,...,tmj]T= i=1tβi1g(wixj+bi)i=1tβi2g(wixj+bi)...i=1tβimg(wixj+bi) m1,(j=1,2,...,Q)(6)
式(6)可表示为:
H β = T ’ (7) H\beta = T’ \tag{7} Hβ=T(7)
其中, T’为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵 , 具体形式如下 :
H ( w 1 , . . . , w i , b 1 , . . . , b l , x 1 , . . . , x Q ) = [ g ( w 1 ∗ x 1 + b 1 ) g ( w 2 ∗ x 1 + b 2 ) . . . g ( w l ∗ x 1 + b l ) g ( w 1 ∗ x 2 + b 1 ) g ( w 2 ∗ x 2 + b 2 ) . . . g ( w l ∗ x 2 + b l ) . . . g ( w 1 ∗ x Q + b 1 ) g ( w 2 ∗ x Q + b 2 ) . . . g ( w l ∗ x Q + b l ) ] Q ∗ l H(w_1,...,w_i,b_1,...,b_l,x_1,...,x_Q) =\left[\begin{matrix} g(w_1*x_1 + b_1)&g(w_2*x_1 + b_2)&...&g(w_l*x_1 + b_l)\\ g(w_1*x_2 + b_1)&g(w_2*x_2 + b_2)&...&g(w_l*x_2 + b_l)\\ ...\\ g(w_1*x_Q + b_1)&g(w_2*x_Q + b_2)&...&g(w_l*x_Q + b_l) \end{matrix}\right]_{Q*l} H(w1,...,wi,b1,...,bl,x1,...,xQ)= g(w1x1+b1)g(w1x2+b1)...g(w1xQ+b1)g(w2x1+b2)g(w2x2+b2)g(w2xQ+b2).........g(wlx1+bl)g(wlx2+bl)g(wlxQ+bl) Ql

2.ELM学习算法

由前文分析可知,ELM在训练之前可以随机产生 w 和 b , 只需确定隐含层神经元个数及隐含层和神经元的激活函数(无限可微) , 即可计算出 β \beta β 。具体地, ELM 的学习算法主要有以下几个步骤:

(1)确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值 w 和隐含层神经元的偏置 b ;

(2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩 阵 H ;

(3)计算输出层权值: β = H + T ′ \beta = H^+T' β=H+T

值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都可以使用(如 S 型函数、正弦函数和复合函数等),还可以使用不可微函数,甚至可以使用不连续的函数作为激 活函数。

3.回归问题数据处理

采用随机法产生训练集和测试集,其中训练集包含 1 900 个样 本,测试集包含 100 个样本。为了减少变量差异较大对模型性能的影响,在建立模型之前先对数据进行归一化。

4.基于海洋捕食者算法优化的ELM

海洋捕食者算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/118468662

由前文可知,ELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用海洋捕食者算法对初始权值和阈值进行优化。适应度函数设计为训练集的误差的MSE:
f i t n e s s = a r g m i n ( M S E p r i d e c t ) fitness = argmin(MSE_{pridect}) fitness=argmin(MSEpridect)

适应度函数选取训练后的MSE误差。MSE误差越小表明预测的数据与原始数据重合度越高。最终优化的输出为最佳初始权值和阈值。然后利用最佳初始权值阈值训练后的网络对测试数据集进行测试。

5.测试结果

海洋捕食者算法相关参数如下:

%训练数据相关尺寸
R = size(Pn_train,1);
S = size(Tn_train,1);
N = 20;%隐含层个数
%% 定义海洋捕食者优化参数
pop=20; %种群数量
Max_iteration=50; %  设定最大迭代次数
dim = N*R + N*S;%维度,即权值与阈值的个数
lb = [-1.*ones(1,N*R),zeros(1,N*S)];%下边界
ub = [ones(1,N*R),ones(1,N*S)];%上边界

将经过海洋捕食者优化后的ELM与基础ELM进行对比。

预测结果如下图

在这里插入图片描述

基础ELM MSE误差:0.00038234
MPA-ELM MSE误差:6.9378e-12

从MSE看,海洋捕食者-ELM明显优于基础ELM

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/485357.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一种结合白平衡统计信息和曝光信息的软光敏算法专利学习

背景技术 随着科技的发展,对视频监控设备提出了越来越高的要求。大部分视频监控设备 都需要能够全天候的监控。ICR的中文名称为双滤光片切换器,是用于让滤光片白天切换到红外截止滤光片和晚上切换到全光谱滤光片的监控设备配件。白天的时候&#xff0c…

2023年5月3日 单调栈及其应用

文章目录 单调栈的应用[830. 单调栈 - AcWing题库](https://www.acwing.com/problem/content/description/832/)[P5788 【模板】单调栈 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)](https://www.luogu.com.cn/problem/P5788)[84. 柱状图中最大的矩形 - 力扣(Lee…

chatGPT的翻译能力如何-GPT批量翻译软件

ChatGPT翻译软件 如果您正在为翻译工作而烦恼,或者需要面对语种广泛的国际化业务,那么ChatGPT翻译软件是您的不二之选。 ChatGPT翻译软件基于自然语言处理技术,利用先进的机器学习算法和深度神经网络模型,能够快速、高效地进行多…

将Egg项目部署到阿里云服务器

目录 1、连接阿里云服务器,上传文件 2、在阿里云服务器上安装Nodejs 3、下载项目依赖 4、安装 egg-scripts 模块 5、启动项目 6、阿里云服务器开启7001端口 1、连接阿里云服务器,上传文件 推荐使用FileZilla Client工具连接云服务器,可…

基于蝴蝶算法的极限学习机(ELM)回归预测-附代码

基于蝴蝶算法的极限学习机(ELM)回归预测 文章目录 基于蝴蝶算法的极限学习机(ELM)回归预测1.极限学习机原理概述2.ELM学习算法3.回归问题数据处理4.基于蝴蝶算法优化的ELM5.测试结果6.参考文献7.Matlab代码 摘要:本文利用蝴蝶算法对极限学习机进行优化,并…

LVS+Keepalived 高可用群集部署

一、LVSKeepalived 高可用群集 在这个高度信息化的 IT 时代,企业的生产系统、业务运营、销售和支持,以及日常管理等环节越来越依赖于计算机信息和服务,对高可用(HA)技术的应用需求不断提高,以便提供持续的…

[Git] Git零基础?带你快速入门,示例练习上手

😚一个不甘平凡的普通人,致力于为Golang社区和算法学习做出贡献,期待您的关注和认可,陪您一起学习打卡!!!😘😘😘 🤗专栏:算法学习 &am…

STL--list

一、list介绍 列表是序列容器,允许在序列内的任何位置执行恒定时间插入和擦除操作,以及双向迭代 列表容器作为双向链表实现;双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个和后一个元素 它们与forward_list非常…

3.rabbitMQ之发布确认高级和整合springboot(重要)找了很多博客整理出来的

1.极端情况下 rabbitMQ需要重启,导致消息投递失败(生产者发消息全部丢失)(交换机或者队列出问题) 生产者需要把数据放到缓存,用定时任务重新发送 解决方法: 0.必须配置文件写 spring.rabbitmq.publisher-confirm-typecorrelatedspring.rabbitmq.publisher-returnstruecorrelati…

appuploader 入门使用

回想一下我们发布 iOS 应用,不仅步骤繁琐,非常耗时。一旦其中一步失误了,又得重新来。作为一名优秀的工程师不应该让这些重复的工作在浪费我们的人生。在软件工程里面,我们一直都推崇把重复、流程化的工作交给程序完成。这次的文章…

【shell脚本】for循环语句

循环语句与函数 一、循环与遍历1.1循环1.2遍历1.3循环与遍历 二、for循环2.1for循环的基本格式2.2for循环小实验2.3双层for循环实验 三、while循环3.1 while格式 四、跳出循环4.1continue跳出循环实验4.2break跳出循环实验 一、循环与遍历 1.1循环 循环 (Loop) 是计算机编程中…

不会前端,怎么快速打造属于自己的个人博客?

个人博客 简介提前准备 一、初始化vuepress项目二、页面配置首页配置顶部配置顶部导航栏路由配置侧边导航栏配置 三、打包部署四、数据统计插槽自定义插槽配置整体结构页面效果 项目地址 简介 主要教大家如何快速搞一个属于自己的博客网站,特别是一些不怎么会前端的…

【C++】——类与对象(上)

文章目录 1. 前言2. 面向过程和面向对象3. 类的引入4. 类的定义4.1 类的俩种定义方式 5. 类的访问限定符及封装5.1 类的访问限定符5.2 封装 6. 类的作用域7. 类的实例化8. 类对象的存储方式9. this指针9.1 this指针特性 10. 结尾 1. 前言 今天我们来学习C初期最重要的知识点&a…

用于无线传感器网络路由的改进leach协议(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨‍💻4 Matlab代码 💥1 概述 当前,无线传感器由于技术的发展得到更加广泛的应用,针对无线传感器网络(WSN)的…

linux重装mmsegmentation

前言 换了个电脑,就想着把之前的mmsegmentation-V0.26.0代码放到新环境,结果踩了不少坑~ 过程 官方步骤 0 安装miniconda 1 创建conda 环境 最开始用的是python3.10,后来发现版本太高不是一件好事,所以装的python3.8 2 安装…

FineBI 6.0入门基础(二)

在图形中分析 组件还可以进行复制,如下图 复制后,切换为【自定义图表】 1.将【毛利额】调整为折线(在图形属性里面进行调整) 2.由于【毛利额】和【毛利额环比增长率】数值差距较大,可将指标中的【毛利额环比增长率】调整为右值轴 3.将图例调整显示位置(组件样式-图例…

ZooKeeper 避坑指南: ZooKeeper 3.6.4 版本 BUG 导致的数据不一致问题

作者:子葵 背景 ZooKeeper 作为分布式系统的元数据中心,对外服务的数据一致性需要得到很好的保证,但是一些老版本的 ZooKeeper 在一些情况下可能无法保证数据的一致性,导致依赖 ZooKeeper 的系统出现异常。 某用户使用 3.4.6 版…

回归问题(AI笔记)

人工智能 回归问题 1943 年,心理学家沃伦麦卡洛克 (Warren McCulloch)和数理逻辑学家沃尔特皮茨(Walter Pitts)通过对生物神经元的研究, 提出了模拟生物神经元机制的人工神经网络的数学模型 ,这一成果被美国神经学家弗 兰克罗森布拉特(Frank …

(别再手动点APP了)UiAutomator2自动化测试框架带你玩转APP操作

目录 前言 一、uiautomator/uiautomator2的前生今世 1.官方文档介绍 2.梳理一下脉络 3.三款框架对比 二、uiautomator2简介 1.项目组成 2.工作原理 三、环境搭建 1.安装uiautomator2 2.初始化设备 3.init时都干了啥? 四、基础操作 1.连接设备 2.命令…

手把手教你搭建 Webpack 5 + React 项目

前言 在平时工作中,为减少开发成本,一般都会使用脚手架来进行开发,比如 create-react-app。脚手架都会帮我们配置好了 webpack,但如果想自己搭建 webpack 项目要怎么做呢?这边文章将介绍如何使用 webpack 5 来搭建 re…