ANR 触发、监控、分析 一网打尽

news2024/11/26 0:34:44

平时看博客或者学知识,学到的东西比较零散,没有独立的知识模块概念,而且学了之后很容易忘。于是我建立了一个自己的笔记仓库 (一个我长期维护的笔记仓库,感兴趣的可以点个star~你的star是我写作的巨大大大大的动力),将平时学到的东西都归类然后放里面,需要的时候呢也方便复习。

仅做学习和记录,方案非原创。

1. ANR是什么

ANR全称是Applicatipon No Response,Android设计ANR的用意,是系统通过与之交互的组件以及用户交互进行超时监控,用来判断应用进程是否存在卡死或响应过慢的问题,通俗来说就是很多系统中看门狗(watchdog)的设计思想。

2. 导致ANR的原因

耗时操作导致ANR,并不一定是app的问题,实际上,有很大的概率是系统原因导致的ANR。下面简单分析一下哪些操作是应用层导致的ANR,哪些是系统导致的ANR。

应用层导致ANR:

  • 函数阻塞:如死循环、主线程IO、处理大数据
  • 锁出错:主线程等待子线程的锁
  • 内存紧张:系统分配给一个应用的内存是有上限的,长期处于内存紧张,会导致频繁内存交换,进而导致应用的一些操作超时

系统导致ANR:

  • CPU被抢占:一般来说,前台在玩游戏,可能会导致你的后台广播被抢占
  • 系统服务无法及时响应:比如获取系统联系人等,系统的服务都是Binder机制,服务能力也是有限的,有可能系统服务长时间不响应导致ANR
  • 其他应用占用大量内存

3. 线下拿到ANR日志

  • adb pull /data/anr/
  • adb bugreport

缺陷:

  • 只能线下,用户反馈时,无法获取ANR日志
  • 可能没有堆栈信息

4. ANR场景

  • Service Timeout:比如前台服务在20s内未执行完成,后台服务Timeout时间是前台服务的10倍,200s;
  • BroadcastQueue Timeout:比如前台广播在10s内未执行完成,后台60s
  • ContentProvider Timeout:内容提供者,在publish过超时10s;
  • InputDispatching Timeout: 输入事件分发超时5s,包括按键和触摸事件。
//ActiveServices.java
// How long we wait for a service to finish executing.
static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;
// How long the startForegroundService() grace period is to get around to
// calling startForeground() before we ANR + stop it.
static final int SERVICE_START_FOREGROUND_TIMEOUT = 10*1000;

//ActivityManagerService.java
// How long we allow a receiver to run before giving up on it.
static final int BROADCAST_FG_TIMEOUT = 10*1000;
static final int BROADCAST_BG_TIMEOUT = 60*1000;
// How long we wait until we timeout on key dispatching.
static final int KEY_DISPATCHING_TIMEOUT = 5*1000;

5. ANR触发流程

ANR触发流程大致可分为2种,一种是Service、Broadcast、Provider触发ANR,另外一种是Input触发ANR。

5.1 Service、Broadcast、Provider触发ANR

大体流程可分为3个步骤:

  1. 埋定时炸弹
  2. 拆炸弹
  3. 引爆炸弹

下面举个startService的例子,详细说说这3个步骤:

1.埋定时炸弹

在Activity中调用startService后,调用链:ContextImpl.startService()->ContextImpl.startServiceCommon()->ActivityManagerService.startService()->ActiveServices.startServiceLocked()->ActiveServices.startServiceInnerLocked()->ActiveServices.bringUpServiceLocked()->ActiveServices.realStartServiceLocked()

//com.android.server.am.ActiveServices.java
private final void realStartServiceLocked(ServiceRecord r,
        ProcessRecord app, boolean execInFg) throws RemoteException {
    ......
    //发个延迟消息给AMS的Handler
    bumpServiceExecutingLocked(r, execInFg, "create");

    ......
    try {
        //IPC通知app进程启动Service,执行handleCreateService
        app.thread.scheduleCreateService(r, r.serviceInfo,
                mAm.compatibilityInfoForPackage(r.serviceInfo.applicationInfo),
                app.getReportedProcState());
    } catch (DeadObjectException e) {
    } finally {
    }
}

private final void bumpServiceExecutingLocked(ServiceRecord r, boolean fg, String why) {
    scheduleServiceTimeoutLocked(r.app);
    .....
}

final ActivityManagerService mAm;

// How long we wait for a service to finish executing.
static final int SERVICE_TIMEOUT = 20*1000;

// How long we wait for a service to finish executing.
static final int SERVICE_BACKGROUND_TIMEOUT = SERVICE_TIMEOUT * 10;

void scheduleServiceTimeoutLocked(ProcessRecord proc) {
    //mAm是AMS,mHandler是AMS里面的一个Handler
    Message msg = mAm.mHandler.obtainMessage(
            ActivityManagerService.SERVICE_TIMEOUT_MSG);
    msg.obj = proc;
    //发个延迟消息给AMS里面的一个Handler
    mAm.mHandler.sendMessageDelayed(msg,
            proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);
}

在startService流程中,在通知app进程启动Service之前,会进行预埋一个炸弹,也就是延迟发送一个消息给AMS的mHandler。当AMS的这个Handler收到SERVICE_TIMEOUT_MSG这个消息时,就认为Service超时了,触发ANR。也就是说,特定时间内,没人来拆这个炸弹,这个炸弹就会爆炸。

2. 拆炸弹

在AMS校验通过后,app这边可以启动Service,于是来到了ApplicationThread的scheduleCreateService方法,该方法是运行在binder线程里面的,所以得切到主线程去执行,也就是ActivityThread的handleCreateService方法:

//android.app.ActivityThread.java
@UnsupportedAppUsage
private void handleCreateService(CreateServiceData data) {
    ......
    Service service = null;
    try {
        //1. 初始化Service
        ContextImpl context = ContextImpl.createAppContext(this, packageInfo);
        Application app = packageInfo.makeApplication(false, mInstrumentation);
        java.lang.ClassLoader cl = packageInfo.getClassLoader();
        service = packageInfo.getAppFactory()
                .instantiateService(cl, data.info.name, data.intent);
        ......
        service.attach(context, this, data.info.name, data.token, app,
                ActivityManager.getService());
        //2. Service执行onCreate,启动完成
        service.onCreate();
        mServices.put(data.token, service);
        try {
            //3. Service启动完成,需要通知AMS
            ActivityManager.getService().serviceDoneExecuting(
                    data.token, SERVICE_DONE_EXECUTING_ANON, 0, 0);
        } catch (RemoteException e) {
        }
    } catch (Exception e) {
    }
}

在app进程这边启动完Service之后,需要IPC通信告知AMS我这边已经启动完成了。AMS.serviceDoneExecuting()->ActiveServices.serviceDoneExecutingLocked()

private void serviceDoneExecutingLocked(ServiceRecord r, boolean inDestroying,
        boolean finishing) {
    ......
    mAm.mHandler.removeMessages(ActivityManagerService.SERVICE_TIMEOUT_MSG, r.app);
    ......
}

很清晰,就是把之前延迟发送的SERVICE_TIMEOUT_MSG消息给移除掉,也就是拆炸弹。只要在规定的时间内把炸弹拆了,那就没事,要是没拆,炸弹就要爆炸,触发ANR。

3. 引爆炸弹

之前延迟给AMS的handler发送了一个消息,mAm.mHandler.sendMessageDelayed(msg,proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);,下面我们来看一下这条消息的逻辑

//com.android.server.am.ActivityManagerService.java

final MainHandler mHandler;

final class MainHandler extends Handler {
    @Override
    public void handleMessage(Message msg) {
        switch (msg.what) {
        ......
        case SERVICE_TIMEOUT_MSG: {
            //这个mServices是ActiveServices
            mServices.serviceTimeout((ProcessRecord)msg.obj);
        } break;
        }
        ......
    }
    ......
}

//com.android.server.am.ActiveServices.java
void serviceTimeout(ProcessRecord proc) {
    String anrMessage = null;
    synchronized(mAm) {
        //计算是否有service超时
        final long now = SystemClock.uptimeMillis();
        final long maxTime =  now -
                (proc.execServicesFg ? SERVICE_TIMEOUT : SERVICE_BACKGROUND_TIMEOUT);
        ServiceRecord timeout = null;
        for (int i=proc.executingServices.size()-1; i>=0; i--) {
            ServiceRecord sr = proc.executingServices.valueAt(i);
            if (sr.executingStart < maxTime) {
                timeout = sr;
                break;
            }
        }
        if (timeout != null && mAm.mProcessList.mLruProcesses.contains(proc)) {
            anrMessage = "executing service " + timeout.shortInstanceName;
        }
    }

    if (anrMessage != null) {
        //有超时的Service,mAm是AMS,mAnrHelper是AnrHelper
        mAm.mAnrHelper.appNotResponding(proc, anrMessage);
    }
}

AMS这边如果收到了SERVICE_TIMEOUT_MSG消息,也就是超时了,没人来拆炸弹,那么它会让ActiveServices确认一下是否有Service超时,有的话,再利用AnrHelper来触发ANR。

void appNotResponding(ProcessRecord anrProcess, String activityShortComponentName,
        ApplicationInfo aInfo, String parentShortComponentName,
        WindowProcessController parentProcess, boolean aboveSystem, String annotation) {
    //添加AnrRecord到List里面
    synchronized (mAnrRecords) {
        mAnrRecords.add(new AnrRecord(anrProcess, activityShortComponentName, aInfo,
                parentShortComponentName, parentProcess, aboveSystem, annotation));
    }
    startAnrConsumerIfNeeded();
}
private void startAnrConsumerIfNeeded() {
    if (mRunning.compareAndSet(false, true)) {
        //开个子线程来处理
        new AnrConsumerThread().start();
    }
}

private class AnrConsumerThread extends Thread {
    @Override
    public void run() {
        AnrRecord r;
        while ((r = next()) != null) {
            ......
            //这里的r就是AnrRecord
            r.appNotResponding(onlyDumpSelf);
            ......
        }
    }
}
private static class AnrRecord {
    void appNotResponding(boolean onlyDumpSelf) {
        //mApp是ProcessRecord
        mApp.appNotResponding(mActivityShortComponentName, mAppInfo,
                mParentShortComponentName, mParentProcess, mAboveSystem, mAnnotation,
                onlyDumpSelf);
    }
}

开了个子线程,然后调用ProcessRecord的appNotResponding方法来处理ANR的流程(弹出app无响应弹窗、dump堆栈什么的),具体流程下面会细说。到这里,炸弹就完全引爆了,触发了ANR。

5.2 Input触发ANR

input的超时检测机制跟Service、Broadcast、Provider截然不同,并非时间到了就一定被爆炸,而是处理后续上报事件的过程才会去检测是否该爆炸,所以更像是扫雷的过程。

input超时机制为什么是扫雷,而非定时爆炸?由于对于input来说即便某次事件执行时间超过Timeout时长,只要用户后续没有再生成输入事件,则不会触发ANR。这里的扫雷是指当前输入系统中正在处理着某个耗时事件的前提下,后续的每一次input事件都会检测前一个正在处理的事件是否超时(进入扫雷状态),检测当前的时间距离上次输入事件分发时间点是否超过timeout时长。如果没有超过,则会重置anr的Timeout,从而不会爆炸。

5.3 哪些路径会引发ANR?

从埋下炸弹到拆炸弹之间的任何一个或多个路径执行慢都会导致ANR。这里以Service为例,如:

  • Service的生命周期的回调方法执行慢
  • 主线程的消息队列存在其他耗时消息让Service回调方法迟迟得不到执行
  • sp操作执行慢
  • system_server进程的binder线程繁忙而导致没有及时收到拆炸弹的指令

5.4 ANR dump主要流程

ANR流程基本是在system_server系统进程完成的,系统进程的行为我们很难监控到,想要监控这个事情就得从系统进程与应用进程沟通的边界着手,看边界上有没有可以操作的地方。

不管是怎么发生的ANR,最后都会走到appNotResponding ,比如输入超时的路径

  1. ActivityManagerService#inputDispatchingTimedOut
  2. AnrHelper#appNotResponding
  3. AnrConsumerThread#run
  4. AnrRecord#appNotResponding
  5. ProcessRecord#appNotResponding

那我们直接分析这个appNotResponding 方法:

//com.android.server.am.ProcessRecord.java
void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,
        String parentShortComponentName, WindowProcessController parentProcess,
        boolean aboveSystem, String annotation, boolean onlyDumpSelf) {
    ArrayList<Integer> firstPids = new ArrayList<>(5);
    SparseArray<Boolean> lastPids = new SparseArray<>(20);

    mWindowProcessController.appEarlyNotResponding(annotation, () -> kill("anr",
                ApplicationExitInfo.REASON_ANR, true));

    long anrTime = SystemClock.uptimeMillis();
    if (isMonitorCpuUsage()) {
        mService.updateCpuStatsNow();
    }

    final boolean isSilentAnr;
    synchronized (mService) {
		//注释1
        // PowerManager.reboot() can block for a long time, so ignore ANRs while shutting down.
		//正在重启
        if (mService.mAtmInternal.isShuttingDown()) {
            Slog.i(TAG, "During shutdown skipping ANR: " + this + " " + annotation);
            return;
        } else if (isNotResponding()) {
			//已经处于ANR流程中
            Slog.i(TAG, "Skipping duplicate ANR: " + this + " " + annotation);
            return;
        } else if (isCrashing()) {
			//正在crash的状态
            Slog.i(TAG, "Crashing app skipping ANR: " + this + " " + annotation);
            return;
        } else if (killedByAm) {
			//app已经被killed
            Slog.i(TAG, "App already killed by AM skipping ANR: " + this + " " + annotation);
            return;
        } else if (killed) {
			//app已经死亡了
            Slog.i(TAG, "Skipping died app ANR: " + this + " " + annotation);
            return;
        }

        // In case we come through here for the same app before completing
        // this one, mark as anring now so we will bail out.
		//做个标记
        setNotResponding(true);

        // Log the ANR to the event log.
        EventLog.writeEvent(EventLogTags.AM_ANR, userId, pid, processName, info.flags,
                annotation);

        // Dump thread traces as quickly as we can, starting with "interesting" processes.
        firstPids.add(pid);

        // Don't dump other PIDs if it's a background ANR or is requested to only dump self.
		//注释2
		//沉默的anr : 这里表示后台anr
        isSilentAnr = isSilentAnr();
        if (!isSilentAnr && !onlyDumpSelf) {
            int parentPid = pid;
            if (parentProcess != null && parentProcess.getPid() > 0) {
                parentPid = parentProcess.getPid();
            }
            if (parentPid != pid) firstPids.add(parentPid);

            if (MY_PID != pid && MY_PID != parentPid) firstPids.add(MY_PID);
						
			//选择需要dump的进程
            for (int i = getLruProcessList().size() - 1; i >= 0; i--) {
                ProcessRecord r = getLruProcessList().get(i);
                if (r != null && r.thread != null) {
                    int myPid = r.pid;
                    if (myPid > 0 && myPid != pid && myPid != parentPid && myPid != MY_PID) {
                        if (r.isPersistent()) {
                            firstPids.add(myPid);
                            if (DEBUG_ANR) Slog.i(TAG, "Adding persistent proc: " + r);
                        } else if (r.treatLikeActivity) {
                            firstPids.add(myPid);
                            if (DEBUG_ANR) Slog.i(TAG, "Adding likely IME: " + r);
                        } else {
                            lastPids.put(myPid, Boolean.TRUE);
                            if (DEBUG_ANR) Slog.i(TAG, "Adding ANR proc: " + r);
                        }
                    }
                }
            }
        }
    }

    ......

    int[] pids = nativeProcs == null ? null : Process.getPidsForCommands(nativeProcs);
    ArrayList<Integer> nativePids = null;

    if (pids != null) {
        nativePids = new ArrayList<>(pids.length);
        for (int i : pids) {
            nativePids.add(i);
        }
    }

    // For background ANRs, don't pass the ProcessCpuTracker to
    // avoid spending 1/2 second collecting stats to rank lastPids.
    StringWriter tracesFileException = new StringWriter();
    // To hold the start and end offset to the ANR trace file respectively.
    final long[] offsets = new long[2];
	//注释4
    File tracesFile = ActivityManagerService.dumpStackTraces(firstPids,
            isSilentAnr ? null : processCpuTracker, isSilentAnr ? null : lastPids,
            nativePids, tracesFileException, offsets);
		......
}

代码比较长,我们一步一步来看。

注释1处首先是针对几种特殊情况:正在重启、已经处于ANR流程中、正在crash、app已经被killed和app已经死亡了,不用处理ANR,直接return。

注释2处isSilentAnr是表示当前是否为一个后台ANR,后台ANR跟前台ANR表现不同,前台ANR会弹出无响应的Dialog,后台ANR会直接杀死进程。什么是前台ANR:发生ANR的进程对用户来说有感知,就是前台ANR,否则就是后台ANR。

注释3处,选择需要dump的进程。发生ANR时,为了方便定位问题,会dump很多信息到Trace文件中。而Trace文件里包含着与ANR相关联的进程的Trace信息,因为产生ANR的原因有可能是其他的进程抢占了太多资源,或者IPC到其他进程的时候卡住导致的。需要被dump的进程分为3类:

  • firstPids:firstPids是需要首先dump的重要进程,发生ANR的进程无论如何是一定要被dump的,也是首先被dump的,所以第一个被加到firstPids中。如果是SilentAnr(即后台ANR),不用再加入任何其他的进程。如果不是,需要进一步添加其他的进程:如果发生ANR的进程不是system_server进程的话,需要添加system_server进程;接下来轮询AMS维护的一个LRU的进程List,如果最近访问的进程包含了persistent的进程,或者带有 *BIND_TREAT_LIKE_ACTVITY* 标签的进程,都添加到firstPids中。
  • extraPids:LRU进程List中的其他进程,都会首先添加到lastPids中,然后lastPids会进一步被选出最近CPU使用率高的进程,进一步组成extraPids;
  • nativePids:nativePids最为简单,是一些固定的native的系统进程,定义在WatchDog.java中

注释4处,拿到需要dump的所有进程的pid后,AMS开始按照firstPids、nativePids、extraPids的顺序dump这些进程的堆栈。这里比较重要,我们需要跟进去看看具体做了什么。

public static Pair<Long, Long> dumpStackTraces(String tracesFile, ArrayList<Integer> firstPids,
        ArrayList<Integer> nativePids, ArrayList<Integer> extraPids) {

    // 最多dump 20秒
    long remainingTime = 20 * 1000;

    // First collect all of the stacks of the most important pids.
    if (firstPids != null) {
        int num = firstPids.size();
        for (int i = 0; i < num; i++) {
            final int pid = firstPids.get(i);
            final long timeTaken = dumpJavaTracesTombstoned(pid, tracesFile, remainingTime);
            remainingTime -= timeTaken;
            if (remainingTime <= 0) {
                Slog.e(TAG, "Aborting stack trace dump (current firstPid=" + pid
                        + "); deadline exceeded.");
                return firstPidStart >= 0 ? new Pair<>(firstPidStart, firstPidEnd) : null;
            }
        }
    }
    ......
}

就是根据顺序取出前面传入的firstPids、nativePidsextraPids 的pid,然后逐一去dump这些进程中所有的线程,当然这是一个非常重的操作,一个进程就有那么多线程,更别说这么多进程了。所以,这里规定了个最长dump时间为20秒,超过则及时返回,这样可以确保ANR弹窗可以及时弹出(或者被kill掉)。接下来我们接着跟进dumpJavaTracesTombstoned。经过一连串的逻辑:ActivityManagerService#dumpJavaTracesTombstoned() → Debug#dumpJavaBacktraceToFileTimeout() → android_os_Debug#android_os_Debug_dumpJavaBacktraceToFileTimeout() → android_os_Debug#dumpTraces() → debuggerd_client#dump_backtrace_to_file_timeout() → debuggerd_client#debuggerd_trigger_dump()。

bool debuggerd_trigger_dump(pid_t tid, DebuggerdDumpType dump_type, unsigned int timeout_ms, unique_fd output_fd) {
    //pid是从AMS那边传过来的,即需要dump堆栈的进程
		pid_t pid = tid;
    //......

    // Send the signal.
		//从android_os_Debug_dumpJavaBacktraceToFileTimeout过来的,dump_type为kDebuggerdJavaBacktrace
    const int signal = (dump_type == kDebuggerdJavaBacktrace) ? SIGQUIT : BIONIC_SIGNAL_DEBUGGER;
    sigval val = {.sival_int = (dump_type == kDebuggerdNativeBacktrace) ? 1 : 0};
		//sigqueue:在队列中向指定进程发送一个信号和数据,成功返回0
    if (sigqueue(pid, signal, val) != 0) {
      log_error(output_fd, errno, "failed to send signal to pid %d", pid);
      return false;
    }
    //......
    LOG(INFO) << TAG "done dumping process " << pid;
    return true;
}

注意,这里相当于是AMS进程间接给需要dump堆栈那个进程发送了一个SIGQUIT信号,那个进程收到SIGQUIT信号之后便开始dump。这里也就是前面所说的边界。现在看起来是当一个进程发生ANR时,则会收到SIGQUIT信号。如果,我们能监控到系统发送的SIGQUIT信号,也许就能感知到发生了ANR,达到监控的目的。

关于进程信号的处理,这里简单提一下:除Zygote进程外,每个进程都会创建一个SignalCatcher守护线程,用于捕获SIGQUIT、SIGUSR1信号,并采取相应的行为。

//art/runtime/signal_catcher.cc
void* SignalCatcher::Run(void* arg) {
  SignalCatcher* signal_catcher = reinterpret_cast<SignalCatcher*>(arg);
  CHECK(signal_catcher != nullptr);
  Runtime* runtime = Runtime::Current();
  //检查当前线程是否依附到Android Runtime
  CHECK(runtime->AttachCurrentThread("Signal Catcher", true, runtime->GetSystemThreadGroup(), !runtime->IsAotCompiler()));

  Thread* self = Thread::Current();
  DCHECK_NE(self->GetState(), kRunnable);
  {
    MutexLock mu(self, signal_catcher->lock_);
    signal_catcher->thread_ = self;
    signal_catcher->cond_.Broadcast(self);
  }

  SignalSet signals;
  signals.Add(SIGQUIT); //添加对信号SIGQUIT的处理
  signals.Add(SIGUSR1); //添加对信号SIGUSR1的处理
	
	//死循环,不断等待监听2个信号的dao'l
  while (true) {
    //等待信号到来,这是个阻塞操作
    int signal_number = signal_catcher->WaitForSignal(self, signals);
    //当信号捕获需要停止时,则取消当前线程跟Android Runtime的关联。
    if (signal_catcher->ShouldHalt()) {
      runtime->DetachCurrentThread();
      return nullptr;
    }
    switch (signal_number) {
    case SIGQUIT:
      signal_catcher->HandleSigQuit(); //输出线程trace
      break;
    case SIGUSR1:
      signal_catcher->HandleSigUsr1(); //强制GC
      break;
    default:
      LOG(ERROR) << "Unexpected signal %d" << signal_number;
      break;
    }
  }
}

在SignalCatcher线程里面,死循环,通过WaitForSignal监听SIGQUIT和SIGUSR1信号的到来,前面系统进程system_server进程发送的SIGQUIT信号也就是在这里被监听到,然后开始dump堆栈。

现在,我们整理一下整个ANR的流程:

  1. 系统监控到app发生ANR后,收集了一些相关进程pid(包括发生ANR的进程),准备让这些进程dump堆栈,从而生成ANR Trace文件
  2. 系统开始向这些进程发送SIGQUIT信号,进程收到SIGQUIT信号之后开始dump堆栈

整个过程的示意图:

ANR流程示意图

图片转自微信客户端技术团队

可以看到,一个进程发生ANR之后的整个流程,只有dump堆栈的行为会发生在发生ANR的进程中,其他过程全在系统进程进行处理的,我们无法感知。这个过程从收到SIGQUIT信号开始到使用socket写Trace结束。然后继续回到系统进程完成剩余的ANR流程,这2个边界上我们可以做做文章。后面我们会详细叙述。

6. ANR监控

Android M(6.0) 版本之后,应用侧无法直接通过监听 data/anr/trace 文件,监控是否发生 ANR。目前了解到的能用的方案主要有下面2种:

6.1 WatchDog

开个子线程,不断往主线程发送消息,并设置超时检测,如果超时还没执行相应消息,则判定为可能发生ANR。需要进一步从系统服务获取相关数据(可通过ActivityManagerService.getProcessesInErrorState()方法获取进程的ANR信息),进一步判定是否真的发生了ANR。

这个方案对应的开源库为ANR-WatchDog,源码比较简单,只有2个源文件。简单解析一下核心代码:


private final Handler _uiHandler = new Handler(Looper.getMainLooper());
private final int _timeoutInterval;
private volatile long _tick = 0;
private volatile boolean _reported = false;

private final Runnable _ticker = new Runnable() {
    @Override public void run() {
        _tick = 0;
        _reported = false;
    }
};

@Override
public void run() {
    setName("|ANR-WatchDog|");

    //_timeoutInterval为设定的超时时长
    long interval = _timeoutInterval;
    while (!isInterrupted()) {
        //_tick为标志,主线程执行了下面发送的_ticker这个Runnable, 那么_tick就会被置为0
        boolean needPost = _tick == 0;
        //在子线程里面需要把标志改为非0,待会儿主线程执行了才知道
        _tick += interval;
        if (needPost) {
            //发个消息给主线程
            _uiHandler.post(_ticker);
        }

        //子线程睡一段时间,起来的时候要是标志位_tick没有被改成0,说明主线程太忙了,或者卡顿了,没来得及执行该消息
        try {
            Thread.sleep(interval);
        } catch (InterruptedException e) {
            _interruptionListener.onInterrupted(e);
            return ;
        }

        // If the main thread has not handled _ticker, it is blocked. ANR.
        if (_tick != 0 && !_reported) {
            //noinspection ConstantConditions
            //排除debug的情况
            if (!_ignoreDebugger && (Debug.isDebuggerConnected() || Debug.waitingForDebugger())) {
                Log.w("ANRWatchdog", "An ANR was detected but ignored because the debugger is connected (you can prevent this with setIgnoreDebugger(true))");
                _reported = true;
                continue ;
            }

            //可以自定义一个Interceptor告诉watchDog,当前上下文环境是否可以进行上报
            interval = _anrInterceptor.intercept(_tick);
            if (interval > 0) {
                continue;
            }

            //上报线程堆栈
            final ANRError error;
            if (_namePrefix != null) {
                error = ANRError.New(_tick, _namePrefix, _logThreadsWithoutStackTrace);
            } else {
                error = ANRError.NewMainOnly(_tick);
            }
            //回调
            _anrListener.onAppNotResponding(error);
            interval = _timeoutInterval;
            _reported = true;
        }
    }
}

核心代码非常简洁,基本上就是上面方案的实现了。有一点需要补充的是,需要进一步从系统服务获取相关数据(可通过ActivityManagerService.getProcessesInErrorState()方法获取进程的ANR信息,具体实现方式下面会详细说明),进一步判定是否真的发生了ANR。可以自定义一个_anrInterceptor,在里面实现这些内容。

6.2 监控SIGQUIT信号

这种方案才是真正的监控ANR,matrix、xCrash都在使用这种方案。已经在国民应用微信等app上检验过,稳定性和可靠性都能得到保证。

在文章上面的ANR流程分析中,我们找到了系统与发生ANR进程之间的边界(即下图中的1和2)。我们能否监听到系统发送给我们的SIGQUIT信号呢?答案当然是可行的。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Dy174VxF-1669787369951)(https://raw.githubusercontent.com/xfhy/Android-Notes/master/Images/ANR流程示意图.png)]

这里需要一点预备知识,首先我们得知道什么是SIGQUIT信号,前面我们提到了除Zygote进程以外的其他进程都有个Signal Catcher线程在不断地通过sigwait监听SIGQUIT信号,当收到SIGQUIT信号时开始dump线程堆栈。我们需要拦截或者监听SIGQUIT信号,首先需要了解信号处理的相关函数,如kill、signal、sigaction、sigwait、pthread_sigmask等,本文就不详细展开这些函数的具体使用了,如需详细了解,推荐阅读《UNIX环境高级编程》。

下面是我写的监控SIGQUIT信号demo的核心代码,完整源码在这里:

void signalHandler(int sig, siginfo_t *info, void *uc) {
    __android_log_print(ANDROID_LOG_DEBUG, "xfhy_anr", "我监听到SIGQUIT信号了,可能发生anr了");

    //在这里去dump主线程堆栈
}

extern "C"
JNIEXPORT jboolean JNICALL
Java_com_xfhy_watchsignaldemo_MainActivity_startWatch(JNIEnv *env, jobject thiz) {
    sigset_t set, old_set;
    sigemptyset(&set);
    sigaddset(&set, SIGQUIT);
		
	/*
     * 这里需要调用SIG_UNBLOCK,因为目标进程被Zogyte fork出来的时候,主线程继承了
     * Zogyte的主线程的信号屏蔽关系,Zogyte主线程在初始化的时候,通过
     * pthread_sigmask SIG_BLOCK把SIGQUIT的信号给屏蔽了,因此我们需要在自己进程的主线程,
     * 设置pthread_sigmask SIG_UNBLOCK ,这会导致原来的SignalCatcher sigwait将失效,
     * 原因是SignalCatcher 线程会对SIGQUIT 信号处理
     */
    int r = pthread_sigmask(SIG_UNBLOCK, &set, &old_set);
    if (0 != r) {
        return false;
    }

    struct sigaction sa{};
    sa.sa_sigaction = signalHandler;
    sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTART;

    return sigaction(SIGQUIT, &sa, nullptr) == 0;
}

Android默认把SIGQUIT设置成了BLOCKED,所以只会响应Signal Catcher线程的sigwait监听SIGQUIT信号,我们用sigaction监听的则收不到,所以这里还需要处理一下。我们通过pthread_sigmask或者sigprocmask把SIGQUIT设置为UNBLOCK,那么再次收到SIGQUIT时,就一定会进入到我们的signalHandler方法中。

除了上面这个之外,还需要注意的是:我们用sigaction抢了Signal Catcher线程的SIGQUIT信号,那Signal Catcher线程就收不到该信号了,那原本的系统dump堆栈的流程就没了,这是不太合适的。所以我们需要将该信号重新发送出去,让Signal Catcher线程接收到该信号。

int tid = getSignalCatcherThreadId(); //遍历/proc/[pid]目录,找到SignalCatcher线程的tid
tgkill(getpid(), tid, SIGQUIT);

以上,咱们得到了一个不改变系统行为的前提下,比较完善的监控SIGQUIT信号的机制,虽然不是特别完美,但这是监控ANR的基础。接下来我们慢慢完善。

6.2.1 完善的ANR监控方案

监控到SIGQUIT信号并不等于就监控到了ANR。

6.2.1.1 误报

发生ANR的进程一定会收到SIGQUIT信号;但是收到SIGQUIT信号的进程并不一定发生了ANR。

可能是下面2种情况:

  1. 其他进程的ANR:发生ANR之后,发生ANR的进程并不是唯一需要dump堆栈的进程,系统会收集许多其他的进程进行dump,也就是说当一个应用发生ANR的时候,其他的应用也有可能收到SIGQUIT信号。所以,我们收到SIGQUIT信号,可能是其他进程发生了ANR,这个时候上报的话就属于是误报了。
  2. 非ANR发送SIGQUIT:发送SIGQUIT信号非常容易,系统和应用级app都能轻易发送SIGQUIT信号:java层调用android.os.Process.sendSignal方法;Native层调用kill或者tgkill方法。我们收到SIGQUIT信号时,可能并非是ANR流程发送的SIGQUIT信号,也会产生误报。

如何解决上面2个误报的问题?回到ANR流程开始的地方细看

//com.android.server.am.ProcessRecord.java
void appNotResponding(String activityShortComponentName, ApplicationInfo aInfo,
        String parentShortComponentName, WindowProcessController parentProcess,
        boolean aboveSystem, String annotation, boolean onlyDumpSelf) {
    //......
    synchronized (mService) {
        //注意,如果是后台ANR,直接就kill进程然后return了,并不会走到下面的makeAppNotRespondingLocked,当前进程也不会有NOT_RESPONDING这个flag
        if (isSilentAnr() && !isDebugging()) {
            kill("bg anr", ApplicationExitInfo.REASON_ANR, true);
            return;
        }

        // Set the app's notResponding state, and look up the errorReportReceiver
        makeAppNotRespondingLocked(activityShortComponentName,
                annotation != null ? "ANR " + annotation : "ANR", info.toString());

        // show ANR dialog ......
    }
}

private void makeAppNotRespondingLocked(String activity, String shortMsg, String longMsg) {
    setNotResponding(true);
    // mAppErrors can be null if the AMS is constructed with injector only. This will only
    // happen in tests.
    if (mService.mAppErrors != null) {
        notRespondingReport = mService.mAppErrors.generateProcessError(this,
                ActivityManager.ProcessErrorStateInfo.NOT_RESPONDING,
                activity, shortMsg, longMsg, null);
    }
    startAppProblemLocked();
    getWindowProcessController().stopFreezingActivities();
}

void setNotResponding(boolean notResponding) {
    mNotResponding = notResponding;
    mWindowProcessController.setNotResponding(notResponding);
}

在ANR弹窗前,会执行makeAppNotRespondingLocked方法,在这里会给发生ANR的进程标记一个NOT_RESPONDING的flag,这个flag可以通过ActivityManager来获取:

private static boolean checkErrorState() {
    try {
        Application application = sApplication == null ? Matrix.with().getApplication() : sApplication;
        ActivityManager am = (ActivityManager) application.getSystemService(Context.ACTIVITY_SERVICE);
        List<ActivityManager.ProcessErrorStateInfo> procs = am.getProcessesInErrorState();
        if (procs == null) return false;
        for (ActivityManager.ProcessErrorStateInfo proc : procs) {
            if (proc.pid != android.os.Process.myPid()) continue;
            if (proc.condition != ActivityManager.ProcessErrorStateInfo.NOT_RESPONDING) continue;
            return true;
        }
        return false;
    } catch (Throwable t){
        MatrixLog.e(TAG,"[checkErrorState] error : %s", t.getMessage());
    }
    return false;
}

监控到SIGQUIT后,我们在20秒内(20秒是ANR dump的timeout时间)不断轮询自己是否有NOT_RESPONDING的flag,一旦发现有这个flag,那么马上就可以认定发生了一次ANR。

ps: 你可能会想,有这么方便的方法,监控SIGQUIT信号不是多余么?我直接搞个死循环,不断监听该flag,一旦发现不就监控到ANR了么?可以是可以,但不优雅,而且有缺陷(低效、耗电、不环保、无法解决下面提到的漏报问题)。

6.2.1.2 漏报

进程处于NOT_RESPONDING的状态可以确认该进程发生了ANR。但是发生ANR的进程并不一定会被设置为NOT_RESPONDING状态

下面2种是特殊情况:

  1. 后台ANR(SilentAnr):如果ANR被标记为了后台ANR(即SilentAnr),那么杀死进程后就会直接return,不会执行到makeAppNotRespondingLocked,那么该进程就不会有NOT_RESPONDING这个flag。这意味着,后台的ANR没办法捕捉到,但后台ANR的量也挺大的,并且后台ANR会直接杀死进程,对用户的体验也是非常负面的,这么大一部分ANR监控不到,当然是无法接受的。
  2. 闪退ANR:想当一部分机型(如OPPO、VIVO两家的高Android版本的机型)修改了ANR的流程,即使是发生在前台的ANR,也并不会弹窗,而是直接杀死进程,即闪退。

基于上面2种情况,我们需要一种机制,在收到SIGQUIT信号后,需要非常快速的侦查出自己是否已经处于ANR的状态,进行快速的dump和上报。此时我们可以通过主线程释放处于卡顿状态来判断,怎么快速的知道主线程是否卡住了?可以通过Looper的mMessage对象,该对象的when变量,表示的是当前正在处理的消息入队的时间,我们可以通过when变量减去当前时间,得到的就是等待时间,如果等待时间过长,就说明主线程是处于卡住的状态。这时候收到SIGQUIT信号基本上就可以认为的确发生了一次ANR:

private static boolean isMainThreadStuck(){
    try {
        MessageQueue mainQueue = Looper.getMainLooper().getQueue();
        Field field = mainQueue.getClass().getDeclaredField("mMessages");
        field.setAccessible(true);
        final Message mMessage = (Message) field.get(mainQueue);
        if (mMessage != null) {
            long when = mMessage.getWhen();
            if(when == 0) {
                return false;
            }
            long time = when - SystemClock.uptimeMillis();
            long timeThreshold = BACKGROUND_MSG_THRESHOLD;
            if (foreground) {
                timeThreshold = FOREGROUND_MSG_THRESHOLD;
            }
            return time < timeThreshold;
        }
    } catch (Exception e){
        return false;
    }
    return false;
}

通过上面几种机制来综合判断收到SIGQUIT信号后,是否真的发生了一次ANR,最大程度地减少误报和漏报。

6.2.1.3 获取ANR Trace

回到上面的ANR流程示意图,Signal Catcher线程写Trace也是一个边界,它是通过socket的write方法来写trace的。那我们可以直接hook这里的write,就能直接拿到系统dump的ANR Trace内容。这个内容非常全面,包括了所有线程的各种状态、锁和堆栈(包括native堆栈),对于我们排查问题十分有用,尤其是一些native问题和死锁等问题。native hook采用PLT Hook方案,稳得很,这种方案已经在微信上验证了其稳定性。

int (*original_connect)(int __fd, const struct sockaddr* __addr, socklen_t __addr_length);
int my_connect(int __fd, const struct sockaddr* __addr, socklen_t __addr_length) {
    if (strcmp(__addr->sa_data, "/dev/socket/tombstoned_java_trace") == 0) {
        isTraceWrite = true;
        signalCatcherTid = gettid();
    }
    return original_connect(__fd, __addr, __addr_length);
}

int (*original_open)(const char *pathname, int flags, mode_t mode);
int my_open(const char *pathname, int flags, mode_t mode) {
    if (strcmp(pathname, "/data/anr/traces.txt") == 0) {
        isTraceWrite = true;
        signalCatcherTid = gettid();
    }
    return original_open(pathname, flags, mode);
}

ssize_t (*original_write)(int fd, const void* const __pass_object_size0 buf, size_t count);
ssize_t my_write(int fd, const void* const buf, size_t count) {
    if(isTraceWrite && signalCatcherTid == gettid()) {
        isTraceWrite = false;
        signalCatcherTid = 0;
        char *content = (char *) buf;
        printAnrTrace(content);
    }
    return original_write(fd, buf, count);
}

void hookAnrTraceWrite() {
    int apiLevel = getApiLevel();
    if (apiLevel < 19) {
        return;
    }
    if (apiLevel >= 27) {
        plt_hook("libcutils.so", "connect", (void *) my_connect, (void **) (&original_connect));
    } else {
        plt_hook("libart.so", "open", (void *) my_open, (void **) (&original_open));
    }

    if (apiLevel >= 30 || apiLevel == 25 || apiLevel ==24) {
        plt_hook("libc.so", "write", (void *) my_write, (void **) (&original_write));
    } else if (apiLevel == 29) {
        plt_hook("libbase.so", "write", (void *) my_write, (void **) (&original_write));
    } else {
        plt_hook("libart.so", "write", (void *) my_write, (void **) (&original_write));
    }
}

有几点需要注意:

  1. 只Hook ANR流程:有些情况下,基础库中的connect/open/write方法可能调用的比较频繁,我们需要把hook的影响降到最低。所以我们只会在接收到SIGQUIT信号后(重新发送SIGQUIT信号给Signal Catcher前)进行hook,ANR流程结束后再unhook。
  2. 只处理Signal Catcher线程open/connect后的第一次write:除了Signal Catcher线程中的dump trace的流程,其他地方调用的write方法我们并不关心,并不需要处理。
  3. Hook点因API Level而不同:需要hook的write方法在不同的Android版本中,所在so库也不同,需分别处理。

到此,matrix监控SIGQUIT信号从而监控ANR的方案的核心逻辑已全部呈现,更多详细源码请移步matrix仓库。

总结一下,该方案通过去监听SIGQUIT信号,从而感知当前进程可能发生了ANR,需配合当前进程是否处于NOT_RESPONDING状态以及主线程是否卡顿来进行甄别,以免误判。注册监听SIGQUIT信号之后,系统原来的Signal Catcher线程就监听不到这个信号了,需要把该信号转发出去,让它接收到,以免影响。当前进程的Signal Catcher线程要dump堆栈的时候,会通过socket的write向system server进程进行传输dump好的数据,我们可以hook这个write,从而拿到系统dump好的ANR Trace内容,相当于我们并没有影响系统的任何流程,还拿到了想要拿到的东西。这个方案完全是在系统的正常dump anr trace的过程中获取信息,所以能拿到的东西更加全面,但是系统的dump过程其实是对性能影响比较大的,时间也比较久。

7. ANR分析

监控固然重要,更重要的是分析是什么原因导致的ANR,然后修复好。

7.1 trace文件分析

拿到trace文件,详细分析下:

----- pid 7761 at 2022-11-02 07:02:26 -----
Cmd line: com.xfhy.watchsignaldemo
Build fingerprint: 'HUAWEI/LYA-AL00/HWLYA:10/HUAWEILYA-AL00/10.1.0.163C00:user/release-keys'
ABI: 'arm64'
Build type: optimized
Zygote loaded classes=11918 post zygote classes=729
Dumping registered class loaders
#0 dalvik.system.PathClassLoader: [], parent #1
#1 java.lang.BootClassLoader: [], no parent
#2 dalvik.system.PathClassLoader: [/system/app/FeatureFramework/FeatureFramework.apk], no parent
#3 dalvik.system.PathClassLoader: [/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes2.dex:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes4.dex:/data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/base.apk!classes3.dex], parent #1
Done dumping class loaders
Intern table: 44132 strong; 436 weak
JNI: CheckJNI is off; globals=681 (plus 67 weak)
Libraries: /data/app/com.xfhy.watchsignaldemo-4tkKMWojrpHAf-Q3iecaHQ==/lib/arm64/libwatchsignaldemo.so libandroid.so libcompiler_rt.so libhitrace_jni.so libhiview_jni.so libhwapsimpl_jni.so libiAwareSdk_jni.so libimonitor_jni.so libjavacore.so libjavacrypto.so libjnigraphics.so libmedia_jni.so libopenjdk.so libsoundpool.so libwebviewchromium_loader.so (15)
//已分配堆内存大小26M,其中2442kb医用,总分配74512个对象
Heap: 90% free, 2442KB/26MB; 74512 objects

Total number of allocations 120222 //进程创建到现在一共创建了多少对象
Total bytes allocated 10MB         //进程创建到现在一共申请了多少内存
Total bytes freed 8173KB           //进程创建到现在一共释放了多少内存
Free memory 23MB                   //不扩展堆的情况下可用的内存
Free memory until GC 23MB          //GC前的可用内存
Free memory until OOME 381MB       //OOM之前的可用内存,这个值很小的话,说明已经处于内存紧张状态,app可能是占用了过多的内存
Total memory 26MB                  //当前总内存(已用+可用)
Max memory 384MB                   //进程最多能申请的内存

.....//省略GC相关信息


//当前进程共17个线程
DALVIK THREADS (17):

//Signal Catcher线程调用栈
"Signal Catcher" daemon prio=5 tid=4 Runnable
  | group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800
  | sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50
  | state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100
  | stack=0x7253454000-0x7253456000 stackSize=991KB
  | held mutexes= "mutator lock"(shared held)
  native: #00 pc 000000000042f8e8  /apex/com.android.runtime/lib64/libart.so (art::DumpNativeStack(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, int, BacktraceMap*, char const*, art::ArtMethod*, void*, bool)+140)
  native: #01 pc 0000000000523590  /apex/com.android.runtime/lib64/libart.so (art::Thread::DumpStack(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, bool, BacktraceMap*, bool) const+508)
  native: #02 pc 000000000053e75c  /apex/com.android.runtime/lib64/libart.so (art::DumpCheckpoint::Run(art::Thread*)+844)
  native: #03 pc 000000000053735c  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::RunCheckpoint(art::Closure*, art::Closure*)+504)
  native: #04 pc 0000000000536744  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::Dump(std::__1::basic_ostream<char, std::__1::char_traits<char>>&, bool)+1048)
  native: #05 pc 0000000000536228  /apex/com.android.runtime/lib64/libart.so (art::ThreadList::DumpForSigQuit(std::__1::basic_ostream<char, std::__1::char_traits<char>>&)+884)
  native: #06 pc 00000000004ee4d8  /apex/com.android.runtime/lib64/libart.so (art::Runtime::DumpForSigQuit(std::__1::basic_ostream<char, std::__1::char_traits<char>>&)+196)
  native: #07 pc 000000000050250c  /apex/com.android.runtime/lib64/libart.so (art::SignalCatcher::HandleSigQuit()+1356)
  native: #08 pc 0000000000501558  /apex/com.android.runtime/lib64/libart.so (art::SignalCatcher::Run(void*)+268)
  native: #09 pc 00000000000cf7c0  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)+36)
  native: #10 pc 00000000000721a8  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64)
  (no managed stack frames)

"main" prio=5 tid=1 Sleeping
  | group="main" sCount=1 dsCount=0 flags=1 obj=0x73907540 self=0x725f010800
  | sysTid=7761 nice=-10 cgrp=default sched=1073741825/2 handle=0x72e60080d0
  | state=S schedstat=( 281909898 5919799 311 ) utm=20 stm=7 core=4 HZ=100
  | stack=0x7fca180000-0x7fca182000 stackSize=8192KB
  | held mutexes=
  at java.lang.Thread.sleep(Native method)
  - sleeping on <0x00f895d9> (a java.lang.Object)
  at java.lang.Thread.sleep(Thread.java:443)
  - locked <0x00f895d9> (a java.lang.Object)
  at java.lang.Thread.sleep(Thread.java:359)
  at android.os.SystemClock.sleep(SystemClock.java:131)
  at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:35)
  at java.lang.reflect.Method.invoke(Native method)
  at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)
  at android.view.View.performClick(View.java:7317)
  at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)
  at android.view.View.performClickInternal(View.java:7291)
  at android.view.View.access$3600(View.java:838)
  at android.view.View$PerformClick.run(View.java:28247)
  at android.os.Handler.handleCallback(Handler.java:900)
  at android.os.Handler.dispatchMessage(Handler.java:103)
  at android.os.Looper.loop(Looper.java:219)
  at android.app.ActivityThread.main(ActivityThread.java:8668)
  at java.lang.reflect.Method.invoke(Native method)
  at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)
  at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)

  ... //此处省略剩余的N个线程

trace参数详细解读:

"Signal Catcher" daemon prio=5 tid=4 Runnable
  | group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800
  | sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50
  | state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100
  | stack=0x7253454000-0x7253456000 stackSize=991KB
  | held mutexes= "mutator lock"(shared held)

第1行:

"Signal Catcher" daemon prio=5 tid=4 Runnable

  • “Signal Catcher” daemon : 线程名,有daemon表示守护线程
  • prio:线程优先级
  • tid:线程内部id
  • 线程状态:Runnable

ANR线程状态对照表

ps: 一般来说:main线程处于BLOCK、WAITING、TIMEWAITING状态,基本上是函数阻塞导致的ANR,如果main线程无异常,则应该排查CPU负载和内存环境。

第2行:

| group="system" sCount=0 dsCount=0 flags=0 obj=0x18c84570 self=0x7252417800

  • group:线程所属的线程组
  • sCount:线程挂起次数
  • dsCount:用于调试的线程挂起次数
  • obj:当前线程关联的Java线程对象
  • self:当前线程地址

第3行:

| sysTid=7772 nice=0 cgrp=default sched=0/0 handle=0x725354ad50

  • sysTid:线程真正意义上的tid
  • nice:调度优先级,值越小则优先级越高
  • cgrp:进程所属的进程调度组
  • sched:调度策略
  • handle:函数处理地址

第4行:

| state=R schedstat=( 16273959 1085938 5 ) utm=0 stm=1 core=4 HZ=100

  • state:线程状态
  • schedstat:CPU调度时间统计(schedstat括号中的3个数字依次是Running、Runable、Switch,Running时间:CPU运行的时间,单位ns,Runable时间:RQ队列的等待时间,单位ns,Switch次数:CPU调度切换次数)
  • utm/stm:用户态/内核态的CPU时间
  • core:该线程的最后运行所在核
  • HZ:时钟频率

第5行:

| stack=0x7253454000-0x7253456000 stackSize=991KB

  • stack:线程栈的地址区间
  • stackSize:栈的大小

第6行:

| held mutexes= "mutator lock"(shared held)

  • mutex:所持有mutex类型,有独占锁exclusive和共享锁shared两类

7.2 ANR案例分析

7.2.1 主线程无卡顿,处于正常状态堆栈

"main" prio=5 tid=1 Native
  | group="main" sCount=1 dsCount=0 flags=1 obj=0x74b38080 self=0x7ad9014c00
  | sysTid=23081 nice=0 cgrp=default sched=0/0 handle=0x7b5fdc5548
  | state=S schedstat=( 284838633 166738594 505 ) utm=21 stm=7 core=1 HZ=100
  | stack=0x7fc95da000-0x7fc95dc000 stackSize=8MB
  | held mutexes=
  kernel: __switch_to+0xb0/0xbc
  kernel: SyS_epoll_wait+0x288/0x364
  kernel: SyS_epoll_pwait+0xb0/0x124
  kernel: cpu_switch_to+0x38c/0x2258
  native: #00 pc 000000000007cd8c  /system/lib64/libc.so (__epoll_pwait+8)
  native: #01 pc 0000000000014d48  /system/lib64/libutils.so (android::Looper::pollInner(int)+148)
  native: #02 pc 0000000000014c18  /system/lib64/libutils.so (android::Looper::pollOnce(int, int*, int*, void**)+60)
  native: #03 pc 00000000001275f4  /system/lib64/libandroid_runtime.so (android::android_os_MessageQueue_nativePollOnce(_JNIEnv*, _jobject*, long, int)+44)
  at android.os.MessageQueue.nativePollOnce(Native method)
  at android.os.MessageQueue.next(MessageQueue.java:330)
  at android.os.Looper.loop(Looper.java:169)
  at android.app.ActivityThread.main(ActivityThread.java:7073)
  at java.lang.reflect.Method.invoke(Native method)
  at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:536)
  at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:876)

比如这个主线程堆栈,看起来很正常,主线程是空闲的,因为它正处于nativePollOnce,正在等待新消息。处于这个状态,那还发生了ANR,可能有2个原因:

  1. dump堆栈时机太晚了,ANR已经发生过了,才去dump堆栈,此时主线程已经恢复正常了
  2. CPU抢占或者内存紧张等其他因素引起

遇到这种情况,要先去分析CPU、内存的使用情况。其次可以关注抓取日志的时间和ANR发生的时间是否相隔太久,时间太久这个堆栈就没有分析的意义了。

7.2.2 主线程执行耗时操作

//模拟主线程耗时操作,View点击的时候调用这个函数
fun makeAnr(view: View) {
    var s = 0L
    for (i in 0..99999999999) {
        s += i
    }
    Log.d("xxx", "s=$s")
}

当主线程执行到makeAnr时,会因为里面的东西执行太耗时而一直在这里进行计算,假设此时有其他事情要想交给主线程处理,则必须得等到makeAnr函数执行完才行。主线程在执行makeAnr时,输入事件无法被处理,用户多次点击屏幕之后,就会输入超时,触发InputEvent Timeout,导致ANR。而如果主线程在执行上面这段耗时操作的过程中,没有其他事情需要处理,那其实是不会发生ANR的。

suspend all histogram:	Sum: 206us 99% C.I. 0.098us-46us Avg: 7.629us Max: 46us
DALVIK THREADS (16):
"main" prio=5 tid=1 Runnable
  | group="main" sCount=0 dsCount=0 flags=0 obj=0x73907540 self=0x725f010800
  | sysTid=32298 nice=-10 cgrp=default sched=1073741825/2 handle=0x72e60080d0
  | state=R schedstat=( 6746757297 5887495 256 ) utm=670 stm=4 core=6 HZ=100
  | stack=0x7fca180000-0x7fca182000 stackSize=8192KB
  | held mutexes= "mutator lock"(shared held)
  at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:58)
  at java.lang.reflect.Method.invoke(Native method)
  at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)
  at android.view.View.performClick(View.java:7317)
  at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)
  at android.view.View.performClickInternal(View.java:7291)
  at android.view.View.access$3600(View.java:838)
  at android.view.View$PerformClick.run(View.java:28247)
  at android.os.Handler.handleCallback(Handler.java:900)
  at android.os.Handler.dispatchMessage(Handler.java:103)
  at android.os.Looper.loop(Looper.java:219)
  at android.app.ActivityThread.main(ActivityThread.java:8668)
  at java.lang.reflect.Method.invoke(Native method)
  at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)
  at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)

从日志上看,主线程处于执行状态,不是空闲状态,导致ANR了,说明com.xfhy.watchsignaldemo.MainActivity.makeAnr这里有耗时操作。

7.2.3 主线程被锁阻塞

模拟主线程等待子线程的锁:

fun makeAnr(view: View) {

    val obj1 = Any()
    val obj2 = Any()

    //搞个死锁,相互等待

    thread(name = "卧槽") {
        synchronized(obj1) {
            SystemClock.sleep(100)
            synchronized(obj2) {
            }
        }
    }

    synchronized(obj2) {
        SystemClock.sleep(100)
        synchronized(obj1) {
        }
    }
}
"main" prio=5 tid=1 Blocked
  | group="main" sCount=1 dsCount=0 flags=1 obj=0x73907540 self=0x725f010800
  | sysTid=19900 nice=-10 cgrp=default sched=0/0 handle=0x72e60080d0
  | state=S schedstat=( 542745832 9516666 182 ) utm=48 stm=5 core=4 HZ=100
  | stack=0x7fca180000-0x7fca182000 stackSize=8192KB
  | held mutexes=
  at com.xfhy.watchsignaldemo.MainActivity.makeAnr(MainActivity.kt:59)
  - waiting to lock <0x0c6f8c52> (a java.lang.Object) held by thread 22   //注释1
  - locked <0x01abeb23> (a java.lang.Object)
  at java.lang.reflect.Method.invoke(Native method)
  at androidx.appcompat.app.AppCompatViewInflater$DeclaredOnClickListener.onClick(AppCompatViewInflater.java:441)
  at android.view.View.performClick(View.java:7317)
  at com.google.android.material.button.MaterialButton.performClick(MaterialButton.java:1219)
  at android.view.View.performClickInternal(View.java:7291)
  at android.view.View.access$3600(View.java:838)
  at android.view.View$PerformClick.run(View.java:28247)
  at android.os.Handler.handleCallback(Handler.java:900)
  at android.os.Handler.dispatchMessage(Handler.java:103)
  at android.os.Looper.loop(Looper.java:219)
  at android.app.ActivityThread.main(ActivityThread.java:8668)
  at java.lang.reflect.Method.invoke(Native method)
  at com.android.internal.os.RuntimeInit$MethodAndArgsCaller.run(RuntimeInit.java:513)
  at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:1109)

"卧槽" prio=5 tid=22 Blocked  //注释2
  | group="main" sCount=1 dsCount=0 flags=1 obj=0x12c8a118 self=0x71d625f800
  | sysTid=20611 nice=0 cgrp=default sched=0/0 handle=0x71d4513d50
  | state=S schedstat=( 486459 0 3 ) utm=0 stm=0 core=4 HZ=100
  | stack=0x71d4411000-0x71d4413000 stackSize=1039KB
  | held mutexes=
  at com.xfhy.watchsignaldemo.MainActivity$makeAnr$1.invoke(MainActivity.kt:52)
  - waiting to lock <0x01abeb23> (a java.lang.Object) held by thread 1
  - locked <0x0c6f8c52> (a java.lang.Object)  
  at com.xfhy.watchsignaldemo.MainActivity$makeAnr$1.invoke(MainActivity.kt:49)
  at kotlin.concurrent.ThreadsKt$thread$thread$1.run(Thread.kt:30)

......

注意看,下面几行:

"main" prio=5 tid=1 Blocked
  - waiting to lock <0x0c6f8c52> (a java.lang.Object) held by thread 22
  - locked <0x01abeb23> (a java.lang.Object)

"卧槽" prio=5 tid=22 Blocked
  - waiting to lock <0x01abeb23> (a java.lang.Object) held by thread 1
  - locked <0x0c6f8c52> (a java.lang.Object)  

主线程的tid是1,线程状态是Blocked,正在等待0x0c6f8c52这个Object,而这个Object被thread 22这个线程所持有,主线程当前持有的是0x01abeb23的锁。而卧槽的tid是22,也是Blocked状态,它想请求的和已有的锁刚好与主线程相反。这样的话,ANR原因也就找到了:线程22持有了一把锁,并且一直不释放,主线程等待这把锁发生超时。在线上环境,常见因锁而ANR的场景是SharePreference写入。

7.2.4 CPU被抢占

CPU usage from 0ms to 10625ms later (2020-03-09 14:38:31.633 to 2020-03-09 14:38:42.257):
  543% 2045/com.test.demo: 54% user + 89% kernel / faults: 4608 minor 1 major //注意看这里
  99% 674/android.hardware.camera.provider@2.4-service: 81% user + 18% kernel / faults: 403 minor
  24% 32589/com.wang.test: 22% user + 1.4% kernel / faults: 7432 minor 1 major
  ......

可以看到,该进程占据CPU高达543%,抢占了大部分CPU资源,因为导致发生ANR,这种ANR与我们的app无关。

7.2.5 内存紧张导致ANR

如果一份ANR日志的CPU和堆栈都很正常,可以考虑是内存紧张。看一下ANR日志里面的内存相关部分。还可以去日志里面搜一下onTrimMemory,如果dump ANR日志的时间附近有相关日志,可能是内存比较紧张了。

10-31 22:37:19.749 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:37:33.458 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:38:00.153 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:38:58.731 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0
10-31 22:39:02.816 20733 20733 E Runtime : onTrimMemory level:80,pid:com.xxx.xxx:Launcher0

7.2.6 系统服务超时导致ANR

系统服务超时一般会包含BinderProxy.transactNative关键字,来看一段日志:

"main" prio=5 tid=1 Native
  | group="main" sCount=1 dsCount=0 flags=1 obj=0x727851e8 self=0x78d7060e00
  | sysTid=4894 nice=0 cgrp=default sched=0/0 handle=0x795cc1e9a8
  | state=S schedstat=( 8292806752 1621087524 7167 ) utm=707 stm=122 core=5 HZ=100
  | stack=0x7febb64000-0x7febb66000 stackSize=8MB
  | held mutexes=
  kernel: __switch_to+0x90/0xc4
  kernel: binder_thread_read+0xbd8/0x144c
  kernel: binder_ioctl_write_read.constprop.58+0x20c/0x348
  kernel: binder_ioctl+0x5d4/0x88c
  kernel: do_vfs_ioctl+0xb8/0xb1c
  kernel: SyS_ioctl+0x84/0x98
  kernel: cpu_switch_to+0x34c/0x22c0
  native: #00 pc 000000000007a2ac  /system/lib64/libc.so (__ioctl+4)
  native: #01 pc 00000000000276ec  /system/lib64/libc.so (ioctl+132)
  native: #02 pc 00000000000557d4  /system/lib64/libbinder.so (android::IPCThreadState::talkWithDriver(bool)+252)
  native: #03 pc 0000000000056494  /system/lib64/libbinder.so (android::IPCThreadState::waitForResponse(android::Parcel*, int*)+60)
  native: #04 pc 00000000000562d0  /system/lib64/libbinder.so (android::IPCThreadState::transact(int, unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+216)
  native: #05 pc 000000000004ce1c  /system/lib64/libbinder.so (android::BpBinder::transact(unsigned int, android::Parcel const&, android::Parcel*, unsigned int)+72)
  native: #06 pc 00000000001281c8  /system/lib64/libandroid_runtime.so (???)
  native: #07 pc 0000000000947ed4  /system/framework/arm64/boot-framework.oat (Java_android_os_BinderProxy_transactNative__ILandroid_os_Parcel_2Landroid_os_Parcel_2I+196)
  at android.os.BinderProxy.transactNative(Native method) ————————————————关键行!!!
  at android.os.BinderProxy.transact(Binder.java:804)
  at android.net.IConnectivityManager$Stub$Proxy.getActiveNetworkInfo(IConnectivityManager.java:1204)—关键行!
  at android.net.ConnectivityManager.getActiveNetworkInfo(ConnectivityManager.java:800)
  at com.xiaomi.NetworkUtils.getNetworkInfo(NetworkUtils.java:2)
  at com.xiaomi.frameworkbase.utils.NetworkUtils.getNetWorkType(NetworkUtils.java:1)
  at com.xiaomi.frameworkbase.utils.NetworkUtils.isWifiConnected(NetworkUtils.java:1)

从日志堆栈中可以看到是获取网络信息发生了ANR:getActiveNetworkInfo。系统的服务都是Binder机制(16个线程),服务能力也是有限的,有可能系统服务长时间不响应导致ANR。如果其他应用占用了所有Binder线程,那么当前应用只能等待。可进一步搜索:blockUntilThreadAvailable关键字:

at android.os.Binder.blockUntilThreadAvailable(Native method)

如果有发现某个线程的堆栈,包含此字样,可进一步看其堆栈,确定是调用了什么系统服务。此类ANR也是属于系统环境的问题,如果某类型手机上频繁发生此问题,应用层可以考虑规避策略。

8. ANR影响因素

即使我们利用上面的一系列骚操作,在发生ANR时,我们拿到了Trace堆栈。但实际情况下这些Trace堆栈中,有很多不是导致ANR的根本原因。Trace堆栈提示某个Service或Receiver导致的ANR,但其实很可能并不是这些组件自身的问题导致的ANR,至于为什么,下面一一道来。

影响ANR的本质要素大体来说分为2个:应用内部环境和系统环境。当系统负载正常,但是应用内部主线程消息过多或耗时验证;另外一类是系统或应用内部其他线程或资源负载过高,主线程调度被严重抢占。

系统负载高咱们没有办法,但系统负载正常时,主线程的调度问题主要有下面几个:

  1. 当前Trace堆栈所在业务耗时严重
  2. 当前Trace堆栈所在业务耗时并不严重,但历史调度有一个严重耗时
  3. 当前Trace堆栈所在业务耗时并不严重,但历史调度有多个消息耗时
  4. 当前Trace堆栈所在业务耗时并不严重,但是历史调度存在巨量重复消息(业务频繁发送消息)
  5. 当前Trace堆栈业务逻辑并不耗时,但是其他线程存在严重资源抢占,如IO、Mem、CPU;
  6. 当前Trace堆栈业务逻辑并不耗时,但是其他进程存在严重资源抢占,如IO、Mem、CPU。

请注意,这里的6个影响因素中,除了第一个以外,其他的根据ANR Trace有可能无法进行判别。这就会导致很多时候看到的ANR Trace里面主线程堆栈对应的业务其实并不耗时(因为可能是前面的消息导致的耗时,但它已经执行完了),如何解决这个问题?

9. 弥补不足

字节跳动内部有一个监控工具:Raster,这个库专门解决上面的问题。有一点可惜的是该工具暂时还没开源,但是我们从字节发出来的Raster原理相关的文章能了解到该库的详细原理。原文 : 今日头条 ANR 优化实践系列 - 监控工具与分析思路

Raster的大致原理:该工具主要是在主线程消息调度过程进行监控,并按照一定的策略聚合,以保证监控工具本身对应用性能和内存抖动影响降至最低。比较耗时的消息会抓取主线从堆栈,这样可以知道那个耗时的消息具体是在干什么,从而针对性优化。同时对应用四大组件消息执行过程进行监控,便于对这类消息的调度及耗时情况进行跟踪和记录。另外对当前正在调度的消息及消息队列中待调度消息进行统计,从而在发生问题时,可以回放主线程的整体调度情况。此外,该库将系统服务的CheckTime机制迁移到应用侧,应用为线程CheckTime机制,以便于系统信息不足时,从线程调度及时性推测过去一段时间系统负载和调度情况。因此该工具用一句话来概括就是:由点到面,回放过去,现在和将来。

细说一下线程 Checktime:通过借助其他子线程的周期检测机制,在每次调度前获取当前系统时间,然后减去我们设置延迟的时间,即可得到本次线程调度前的真实间隔时间,如设置线程每隔300ms调度一次,结果发现实际响应时间间隔有时会超过300ms,如果偏差越大则说明线程没有及时调度,进一步反映系统响应能力变差。通过这样的方式,即使线上环境获取不到系统日志,也可以从侧面反映不同时段系统负载对线程调度影响。当连续发生多次严重Delay时,说明线程调度受到了影响。

通过上诉监控能力,我们就可以清晰的知道ANR发生时主线程历史消息调度以及耗时严重消息的采样堆栈,同时可以知道正在执行消息的耗时,以及消息队列中调度消息的状态。同时通过线程CheckTime机制从侧面反映线程调度响应能力,由此完成了应用侧监控信息从点到面的覆盖。

有大佬根据该文章的原理实现了一个类似的开源库: MoonlightTreasureBox,MoonlightTreasureBox 开源地址。

10. QA

10.1 在Activity#onCreate中sleep会导致ANR吗?

不会,ANR的场景只有下面4种:Service Timeout、BroadcastQueue Timeout、ContentProvider Timeout、InputDispatching Timeout。

当然,如果在Activity#onCreate中sleep的过程中,用户点击了屏幕,那是有可能触发InputDispatching Timeout的。

11. 小结

很荣幸地恭喜你,读完了整篇文章。

ANR是老生常谈的问题了,本文从定义、原因、发生场景、触发流程、监控与分析等多方面入手,尽力补全ANR这块的知识。

ANR的发生场景只有4种:Service Timeout、BroadcastQueue Timeout、ContentProvider Timeout、InputDispatching Timeout,但导致ANR的原因是多种多样的,可能是App这边导致的,也可能是系统那边导致的。触发ANR的过程大致又可以分为2种,一种是Service、Broadcast、Provider触发ANR:埋炸弹、拆炸弹、引爆炸弹,另外一种是Input触发ANR:处理后续时检测之前的。触发ANR之后,会走dump ANR Trace的流程,收集相关进程的堆栈信息写入文件。我们可以监听SIGQUIT信号,感知到系统在走dump ANR Trace的流程,我们可以进一步确认一下当前进程是否处于ANR的状态,然后通过hook系统与App的边界,从而通过socket拿到系统dump好的ANR Trace内容。拿到ANR Trace内容之后,当然就是分析了,详细请看文章。但是有时候,拿到的ANR Trace并不能把真正的ANR原因给分析出来,这时就得上字节内部的大杀器了:Raster,虽然暂时还没开源,但字节已将其原理一五一十的分享出来了。Raster主要是能知道主线程的消息调度在过去、现在、将来的具体情况,配合线程 CheckTime 感知线程调度能力,要比单单分析 ANR Trace要方便很多。

12. 资料

感谢以下所有大佬的精彩文章。

  • 卡顿、ANR、死锁,线上如何监控? https://juejin.cn/post/6973564044351373326#heading-34
  • 你管这破玩意叫 IO 多路复用?https://mp.weixin.qq.com/s?__biz=Mzk0MjE3NDE0Ng==&mid=2247494866&idx=1&sn=0ebeb60dbc1fd7f9473943df7ce5fd95&chksm=c2c5967ff5b21f69030636334f6a5a7dc52c0f4de9b668f7bac15b2c1a2660ae533dd9878c7c&mpshare=1&scene=1&srcid=04239yXVUr6ekmLg7ZSKlFpa&sharer_sharetime=1619147468052&sharer_shareid=2498540345d210ebc4198a40ae94e9ec#rd
  • epoll或者kqueue的原理是什么? https://www.zhihu.com/question/20122137/answer/14049112
  • Gityuan 理解Android ANR的信息收集过程 http://gityuan.com/2016/12/02/app-not-response/
  • Gityuan 理解Android ANR的触发原理 http://gityuan.com/2016/07/02/android-anr
  • Gityuan Input系统—ANR原理分析 http://gityuan.com/2017/01/01/input-anr/
  • Gityuan 彻底理解安卓应用无响应机制 http://gityuan.com/2019/04/06/android-anr/
  • Gityuan Input系统—事件处理全过程 http://gityuan.com/2016/12/31/input-ipc/
  • 微信Android客户端的卡顿监控方案 https://mp.weixin.qq.com/s/3dubi2GVW_rVFZZztCpsKg
  • Touch事件如何传递到Activity https://www.jianshu.com/p/7d442ed0a355
  • 浅析 Android 输入事件处理(一) https://zhuanlan.zhihu.com/p/26893970
  • 【Android】事件处理系统 https://www.cnblogs.com/lcw/p/3373214.html
  • Android 输入系统 & ANR机制的设计与实现 https://mp.weixin.qq.com/s/OyyP_BQqz0gLOfmZffoD1A
  • Android PLT hook 概述 https://github.com/iqiyi/xHook/blob/master/docs/overview/android_plt_hook_overview.zh-CN.md
  • Android 输入系统 & ANR机制的设计与实现 https://mp.weixin.qq.com/s/OyyP_BQqz0gLOfmZffoD1A
  • 今日头条 ANR 优化实践系列 - 设计原理及影响因素 https://mp.weixin.qq.com/s/ApNSEWxQdM19QoCNijagtg
  • 今日头条 ANR 优化实践系列 - 监控工具与分析思路 https://mp.weixin.qq.com/s/_Z6GdGRVWq-_JXf5Fs6fsw
  • Matrix - ANR 原理解析 https://www.dalvik.work/2021/12/03/matrix-anr/
  • 西瓜视频稳定性治理体系建设三:Sliver 原理及实践https://mp.weixin.qq.com/s/LW3eMK9O2tfFtZcu5eqitg (这篇文章提到,looper消息分发和监控Signal信号有可能无法监控到真正的ANR,可能dump堆栈时已经错过真正的时机,需要获取到dump堆栈时的前面的消息堆栈,好像matrix有,到时看一下)
  • 西瓜卡顿 & ANR 优化治理及监控体系建设 https://mp.weixin.qq.com/s/2sjG5qkrUNQsI0jEsnh4kQ
  • 微信Android客户端的ANR监控方案 监控signal信号 https://blog.csdn.net/stone_cold_cool/article/details/119464855
  • 今日头条 ANR 优化实践系列分享 - 实例剖析集锦 https://mp.weixin.qq.com/s/4-_SnG4dfjMnkrb3rhgUag
  • 今日头条 ANR 优化实践系列 - Barrier 导致主线程假死 https://mp.weixin.qq.com/s/OBYWrUBkWwV8o6ChSVaCvw
  • 今日头条 ANR 优化实践系列 - 告别 SharedPreference 等待 https://mp.weixin.qq.com/s/kfF83UmsGM5w43rDCH544g
  • 理解杀进程的实现原理 - Gityuan博客 | 袁辉辉的技术博客
  • 理解Android进程创建流程 - Gityuan博客 | 袁辉辉的技术博客
  • 「ANR」Android SIGQUIT(3) 信号拦截与处理_阿里巴巴终端技术的博客-CSDN博客
  • 干货:ANR日志分析全面解析 https://zhuanlan.zhihu.com/p/378902923
  • Android ANR https://www.jianshu.com/p/487771a67d1b

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/48390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用VS软件开发“浪漫烟花“<笔记摘录>

此处主要讲:如何开发一个连续的烟花弹上升并进行烟花爆炸的程序. 第一步自然是创建窗口,设置窗口宽度为1200,高度为800(#include <graphics.h>) initgraph(1200, 800);//创建窗口,宽度1200,高度800 第二步我们需要为这个窗口添加背景音乐,这里我们添加了一首"周杰伦…

【使用 BERT 的问答系统】第 1 章 : 自然语言处理简介

&#x1f50e;大家好&#xff0c;我是Sonhhxg_柒&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流&#x1f50e; &#x1f4dd;个人主页&#xff0d;Sonhhxg_柒的博客_CSDN博客 &#x1f4c3; &#x1f381;欢迎各位→点赞…

【车间调度】基于模拟退火优化算法的的并行车间机器优化调度(Matlab代码实现)

目录 1 概述 2并行机调度问题的的描述 3 模拟退火法 4 基于模拟退火优化算法的的并行车间机器优化调度&#xff08;Matlab代码实现&#xff09; 4.1 运行结果 5 参考文献 6 Matlab代码 1 概述 并行机调度&#xff08;也称并行多机调度, Parallel MachinesScheduling Prob…

你不知道的npm

npm 前端工程化离不开 npm&#xff08;node package manager&#xff09; 或者 Yarn 这些管理工具。npm 或 Yarn 在工程项目中&#xff0c;除了负责依赖的安装和维护以外&#xff0c;还能通过 npm scripts 串联起各个职能部分&#xff0c;让独立的环节自动运转起来。 npm诞生…

跨平台.NET应用UI组件DevExpress XAF v22.1 - 增强Web API Service

DevExpress XAF是一款强大的现代应用程序框架&#xff0c;允许同时开发ASP.NET和WinForms。DevExpress XAF采用模块化设计&#xff0c;开发人员可以选择内建模块&#xff0c;也可以自行创建&#xff0c;从而以更快的速度和比开发人员当前更强有力的方式创建应用程序。&#xff…

Web进阶

目录 DOM节点操作&#xff08;上&#xff09; 一、任务目标 二、任务背景 三、任务内容 1、DOM结构及节点 DOM节点操作&#xff08;下&#xff09; 一、任务目标 二、任务背景 三、任务内容 1、DOM修改 DOM控制CSS样式 一、任务目标 二、任务背景 三、任务内容 …

达摩院快速动作识别TPS ECCV论文深入解读

一、论文&代码 论文&#xff1a;https://www.ecva.net/papers/eccv_2022/papers_ECCV/papers/136630615.pdf 模型&代码&#xff1a;ModelScope 魔搭社区 二、背景 高效的时空建模(Spatiotemporal modeling)是视频理解和动作识别的核心问题。相较于图像的Transforme…

ArrayList源码分析

ArrayList源码分析 注意:本笔记分析对象为 Java8 版本,随版本不同,源码会发生变化。 1 ArrayList类图与简介 ArrayList是一个 非线程安全,基于数组实现的一个动态数组。可以看到,它的顶层接口是 Collection<E> 集合类。 Note: ArrayList 可以存放所有元素,包括 n…

C语言详细知识点(下)

⛄️上一篇⛄️C语言详细知识点&#xff08;上&#xff09; 文章目录五、数组1、一维数组的定义及使用2、二维数组的定义及使用3、字符数组的定义及使用六、函数1、函数的定义2、函数的调用3、函数的声明4、函数的嵌套调用5、函数的递归调用七、指针1、什么是指针2、指针变量3、…

如何用蓝牙实现无线定位(二)--信号塔设置

1. 配置BLE4.0模块 根据三点定位原理&#xff0c;本项目需要使用3个信号塔。3个信号塔的主体均为BLE4.0模块&#xff0c;需要把BLE4.0模块的AT指令设置为“从设备”。 方法为&#xff1a; &#xff08;1&#xff09;给控制板刷一套空的程序。初始打开arduino IDE或新建&#x…

RabbitMQ事务消息

通过对信道的设置实现 channel.txSelect()&#xff1b;通知服务器开启事务模式&#xff1b;服务端会返回Tx.Select-Ok channel.basicPublish&#xff1b;发送消息&#xff0c;可以是多条&#xff0c;可以是消费消息提交ackchannel.txCommit() &#xff1b;提交事务&#xff1b;…

Devkit开发框架插件工具——Gzip工程创建

Devkit开发框架插件工具——Gzip工程创建 基于鲲鹏亲和开发框架进行原生开发&#xff0c;创建通用计算功能。 二、 操作前提。 1、 在鲲鹏社区申请远程实验室&#xff0c;操作系统选择OpenEuler。 点击链接&#xff1a;鲲鹏社区-官网丨凝心聚力 共创行业新价值&#xff0c;打…

[附源码]Python计算机毕业设计Django的网上点餐系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;我…

蓝牙耳机什么牌子音质最好?高音质蓝牙耳机盘点

如今蓝牙耳机是越来越获得大众的喜爱了&#xff0c;越来越多的年轻人都离不开它了&#xff0c;很多人在买耳机的时候会在意蓝牙耳机的音质&#xff0c;毕竟在自己的耳朵里面听到完美的音乐还是很重要的。下面为大家介绍几款音质超赞的无线蓝牙耳机。 1、南卡小音舱 蓝牙版本&…

关于使用图表控件LightningChart的十大常见问题及解答

LightningChart是芬兰的一款高性能图表开发控件&#xff0c;其中的LightningChart .NET支持实时可视化1万亿个数据点&#xff0c;且可以直接用于.NET WinForms、WPD、传统的Win32 C的应用程序中&#xff1b;而LightningChart JS是一款性能极高的JavaScript图表库&#xff0c;专…

如何设计高可用架构

高可用复杂度模型 计算高可用 任务分配 将任务分配给多个服务器执行 复杂度分析 增加“任务分配器”节点&#xff0c;可以是独立的服务器&#xff0c;也可以是SDK任务分配器需要管理所有的服务器&#xff0c;可以通过配置文件&#xff0c;也可以通过配置服务器&#xff08;例…

2023 年 10 大 Web 开发趋势

公司的在线形象是最重要的。您使用的平台越多&#xff0c;您就会变得越成功&#xff01;拥有在线形象的困难部分是脱颖而出。如果你没有有趣的东西可以提供&#xff0c;你会迷失在人群中。 除了网站具有的基本功能外&#xff0c;您还需要拥有更多功能才能使您的网站具有可持续…

基于BDD的接口自动化框架开箱即用

1、背景说明 项目思想&#xff1a;BDD 行为驱动开发的思想褒贬不一&#xff0c;这里不多说。遵循的宗旨能解决业务痛点的思想就是好思想。 接口测试工具在实际的业务测试场景中往往会遇到一些使用上的局限性&#xff0c;自定义扩展要求技术较高&#xff0c;如果二次开发工具…

平安康养的生意经:养老的壳,金融的核

图片来源Unsplash 文丨螳螂观察 作者丨陈淼 根据第七次人口普查数据&#xff0c;我国60岁及以上老年人口占总人口的比重为18.7%&#xff0c;人口结构即将进入中度老龄化。而伴随着社会老龄化趋势的加剧&#xff0c;背后的养老市场也在迎来巨大的商业化增长。 现阶段&#x…

下班路上捡了一部手机,我用8年开发知识主动找到了失主

☆ 我们学习开发知识&#xff0c;其实并不是只解决当前用户的需求&#xff0c;实现UI原型的还原&#xff0c;不应该只把自己嵌套在当前的浏览器或者某个docker的环境下。 因为不管你在tomcat或者数据库里折腾得再欢&#xff0c;可能到了生活中发现自己失去了超能力。 ☆ 记得有…