​【五一创作】基于mysql关系型实现分布式锁

news2024/11/22 1:51:54

看完该文预计用时:15分钟

看之前应具体的技术栈:springboot mysql nginx(了解即可)

目录

0.写在前面

1. 从减库存聊起

1.1. 环境准备

  1.2. 简单实现减库存

 1.3. 演示超卖现象

1.4. jvm锁问题演示 

1.4.2. 原理

1.5. 多服务问题 

1.5.1. 安装配置nginx

1.5.2. 压力测试

 1.6. mysql锁演示

1.6.1. mysql悲观锁

1.6.2. mysql乐观锁 

 1.6.3. mysql锁缺陷

 2. 基于mysql实现分布式锁

2.1. 基本思路 

2.2. 代码实现

2.3. 缺陷及解决方案 


0.写在前面

在多线程高并发场景下,为了保证资源的线程安全问题,jdk为我们提供了synchronized关键字和
ReentrantLock可重入锁,但是它们只能保证一个jvm内的线程安全。在分布式集群、微服务、云原生横行的当下,如何保证不同进程、不同服务、不同机器的线程安全问题,jdk并没有给我们提供既有的解决方案。此时,我们就必须借助于相关技术手动实现了。目前主流的实现有三种方式:
1. 基于mysql关系型实现
2. 基于redis非关系型数据实现
3. 基于zookeeper实现

这篇文章主要讲解的是基于基于mysql关系型实现分布式锁

1. 从减库存聊起

库存在并发量较大情况下很容易发生超卖现象,一旦发生超卖现象,就会出现多成交了订单而发不了货的情况。

场景:
        商品S库存余量为5时,用户A和B同时来购买一个商品S,此时查询库存数都为5,库存充足则开始减库存:
用户A:update db_stock set stock = stock - 1 where id = 1
用户B:update db_stock set stock = stock - 1 where id = 1
并发情况下,更新后的结果可能是4,而实际的最终库存量应该是3才对

1.1. 环境准备

为了模拟具体场景我们需要准备开发环境

首先需要在mysql数据库中准备一张表:

CREATE TABLE `db_stock` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`product_code` varchar(255) DEFAULT NULL COMMENT '商品编号',
`stock_code` varchar(255) DEFAULT NULL COMMENT '仓库编号',
`count` int(11) DEFAULT NULL COMMENT '库存量',
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8;

 表中数据如下:

 创建分布式锁demo工程:

 建立以下工具目录结构:

 pom依赖文件:


    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.46</version>
        </dependency>
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.0</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.16</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
</project>

 application.yml配置文件:

server:
  port: 6000
spring:
  datasource:
    driver-class-name: com.mysql.jdbc.Driver
    url: jdbc:mysql://172.16.116.100:3306/test
    username: root
    password: root

DistributedLockApplication启动类:

@SpringBootApplication
@MapperScan("com.atguigu.distributedlock.mapper")

public class DistributedLockApplication {
    public static void main(String[] args) {
        SpringApplication.run(DistributedLockApplication.class, args);
   }
}

Stock实体类:

@Data
@TableName("db_stock")
public class Stock {
   @TableId
   private Long id;
   private String productCode;
   private String stockCode;
   private Integer count;
}

StockMapper接口:

public interface StockMapper extends BaseMapper<Stock> {
}

  1.2. 简单实现减库存

接下来咱们代码实操一下

StockController:

@RestController
public class StockController {
    @Autowired
    private StockService stockService;
    @GetMapping("check/lock")
    public String checkAndLock(){
        this.stockService.checkAndLock();
        return "验库存并锁库存成功!";
    }
}

StockService:

@Service
public class StockService {
    @Autowired
    private StockMapper stockMapper;

    public void checkAndLock() {
// 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
// 再减库存
        if (stock != null && stock.getCount() > 0) {
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
        }
    }
}

测试:

 

 查看数据库:

在浏览器中一个一个访问时,每访问一次,库存量减1,没有任何问题。

 1.3. 演示超卖现象

接下来咱们使用jmeter压力测试工具,高并发下压测一下,添加线程组:并发100循环50次,即5000次请求。

 

 给线程组添加HTTP Request请求:

填写测试接口路径如下:

再选择你想要的测试报表,例如这里选择聚合报告:

启动测试,查看压力测试报告:

测试结果:请求总数5000次,平均请求时间202ms,中位数(50%)请求是在173ms内完成的,90%请求是在344ms内完成的,最小耗时12ms,最大耗时1125ms,错误率0%,每秒钟平均473.8次。

查看mysql数据库剩余库存数:还有4870

此时如果还有人来下单,就会出现超卖现象(别人购买成功,而无货可发)。

1.4. jvm锁问题演示 

使用jvm锁(synchronized关键字或者ReetrantLock)试试:

 重启tomcat服务,再次使用jmeter压力测试,效果如下:

查看mysql数据库:

 并没有发生超卖现象,完美解决。  

1.4.2. 原理

添加synchronized关键字之后,StockService就具备了对象锁,由于添加了独占的排他锁,同一时刻只 有一个请求能够获取到锁,并减库存。此时,所有请求只会one-by-one执行下去,也就不会发生超卖现象。

1.5. 多服务问题 

 使用jvm锁在单工程单服务情况下确实没有问题,但是在集群情况下会怎样? 接下启动多个服务并使用nginx负载均衡,结构如下:

启动三个服务(端口号分别8000 8100 8200),如下:

1.5.1. 安装配置nginx

基于安装nginx:

# 拉取镜像

docker pull nginx:latest

# 创建nginx对应资源、日志及配置目录

mkdir -p /opt/nginx/logs /opt/nginx/conf /opt/nginx/html

# 先在conf目录下创建nginx.conf文件,配置内容参照下方

# 再运行容器

docker run -d -p 80:80 --name nginx -v /opt/nginx/html:/usr/share/nginx/html 

-v /opt/nginx/conf/nginx.conf:/etc/nginx/nginx.conf -v 
/opt/nginx/logs:/var/log/nginx nginx
user  nginx;
worker_processes  1;

error_log  /var/log/nginx/error.log warn;
pid        /var/run/nginx.pid;

events {
    worker_connections  1024;
}

http {
    include       /etc/nginx/mime.types;
    default_type  application/octet-stream;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" '
                      '$status $body_bytes_sent "$http_referer" '
                      '"$http_user_agent" "$http_x_forwarded_for"';

    access_log  /var/log/nginx/access.log  main;

    sendfile        on;
    #tcp_nopush     on;

    keepalive_timeout  65;

    #gzip  on;

    #include /etc/nginx/conf.d/*.conf;
	
	upstream distributed {
		server 172.16.116.1:8000;
		server 172.16.116.1:8100;
		server 172.16.116.1:8200;
	}
	
	server {
		listen       80;
        server_name  172.16.116.100;
		location / {
			proxy_pass http://distributed;
		}
	}
	
}

 在浏览器中测试:172.16.116.100是我的nginx服务器地址

 经过测试,通过nginx访问服务一切正常。

1.5.2. 压力测试

 注意:先把数据库库存量还原到5000。

参照之前的测试用例,再创建一个新的测试组:参数给之前一样

配置nginx的地址及 服务的访问路径如下:

 测试结果:性能只是略有提升。

 数据库库存剩余量如下:

 又出现了并发问题,即出现了超卖现象。

 1.6. mysql锁演示

除了使用jvm锁之外,还可以使用数据锁:悲观锁 或者 乐观锁

悲观锁:在读取数据时锁住那几行,其他对这几行的更新需要等到悲观锁结束时才能继续 。 乐观所:读取数据时不锁,更新时检查是否数据已经被更新过,如果是则取消当前更新,一般在悲观锁 的等待时间过长而不能接受时我们才会选择乐观锁。

1.6.1. mysql悲观锁

在MySQL的InnoDB中,预设的Tansaction isolation level 为REPEATABLE READ(可重读)

在SELECT 的读取锁定主要分为两种方式:

  • SELECT ... LOCK IN SHARE MODE (共享锁)
  • SELECT ... FOR UPDATE (悲观锁)

这两种方式在事务(Transaction) 进行当中SELECT 到同一个数据表时,都必须等待其它事务数据被提交(Commit)后才会执行。 而主要的不同在于LOCK IN SHARE MODE 在有一方事务要Update 同一个表单时很容易造成死锁。简单的说,如果SELECT 后面若要UPDATE 同一个表单,最好使用SELECT ... FOR UPDATE。

代码实现改造StockService:

在StockeMapper中定义selectStockForUpdate方法:

public interface StockMapper extends BaseMapper<Stock> {
    public Stock selectStockForUpdate(Long id);
}

在StockMapper.xml中定义对应的配置:  

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
        "http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.atguigu.distributedlock.mapper.StockMapper">
    <select id="selectStockForUpdate" 
resultType="com.atguigu.distributedlock.pojo.Stock">
       select * from db_stock where id = #{id} for update
    </select>
</mapper>

压力测试

注意:测试之前,需要把库存量改成5000。压测数据如下:比jvm性能高很多,比无锁要低将近1倍

mysql数据库存:

1.6.2. mysql乐观锁 

乐观锁( Optimistic Locking ) 相对悲观锁而言,乐观锁假设认为数据一般情况下不会造成冲突,所 以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则重试。那么 我们如何实现乐观锁呢?

使用数据版本(Version)记录机制实现,这是乐观锁最常用的实现 方式。一般是通过为数据库表增加 一个数字类型的 “version” 字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一 次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录 的当前版本信息与第一次取 出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新。

给db_stock表添加version字段:

 对应也需要给Stock实体类添加version属性。此处略。

代码实现

public void checkAndLock() {
    // 先查询库存是否充足
    Stock stock = this.stockMapper.selectById(1L);
    // 再减库存
    if (stock != null && stock.getCount() > 0){
        // 获取版本号
        Long version = stock.getVersion();
        stock.setCount(stock.getCount() - 1);
        // 每次更新 版本号 + 1
        stock.setVersion(stock.getVersion() + 1);
        // 更新之前先判断是否是之前查询的那个版本,如果不是重试
        if (this.stockMapper.update(stock, new UpdateWrapper<Stock>
().eq("id", stock.getId()).eq("version", version)) == 0) {
            checkAndLock();
       }
   }
}

 重启后使用jmeter压力测试工具结果如下:

修改测试参数如下:

 测试结果如下:

说明乐观锁在并发量越大的情况下,性能越低(因为需要大量的重试);并发量越小,性能越高。

 1.6.3. mysql锁缺陷

在数据库集群情况下会导致数据库锁失效,并且很多数据库集群的中间件压根就不支持悲观锁。例如:mycat,在读写分离的场景下可能会导致乐观锁不可靠。 这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。

 2. 基于mysql实现分布式锁

 不管是jvm锁还是mysql锁,为了保证线程的并发安全,都提供了悲观独占排他锁。所以独占排他也是 分布式锁的基本要求。 可以利用唯一键索引不能重复插入的特点实现。设计表如下:

CREATE TABLE `db_lock` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `lock_name` varchar(50) NOT NULL COMMENT '锁名',
  `class_name` varchar(100) DEFAULT NULL COMMENT '类名',
  `method_name` varchar(50) DEFAULT NULL COMMENT '方法名',
  `server_name` varchar(50) DEFAULT NULL COMMENT '服务器ip',
  `thread_name` varchar(50) DEFAULT NULL COMMENT '线程名',
  `create_time` timestamp NULL DEFAULT NULL ON UPDATE CURRENT_TIMESTAMP 

COMMENT '获取锁时间',
  `desc` varchar(100) DEFAULT NULL COMMENT '描述',
  PRIMARY KEY (`id`),
  UNIQUE KEY `idx_unique` (`lock_name`)
) ENGINE=InnoDB AUTO_INCREMENT=1332899824461455363 DEFAULT CHARSET=utf8;

Lock实体类:  

@Data
@AllArgsConstructor
@NoArgsConstructor
@TableName("db_lock")

public class Lock {
    private Long id;
    private String lockName;
    private String className;
    private String methodName;
    private String serverName;
    private String threadName;
    private Date createTime;
    private String desc;
}

LockMapper接口:

public interface LockMapper extends BaseMapper<Lock> {
}

2.1. 基本思路 

synchronized关键字和ReetrantLock锁都是独占排他锁,即多个线程争抢一个资源时,同一时刻只有 一个线程可以抢占该资源,其他线程只能阻塞等待,直到占有资源的线程释放该资源。

  1. 线程同时获取锁(insert)
  2. 获取成功,执行业务逻辑,执行完成释放锁(delete)
  3. 其他线程等待重试

2.2. 代码实现

改造StockService:

@Service

public class StockService {
    @Autowired
    private StockMapper stockMapper;
    @Autowired
    private LockMapper lockMapper;
    /**
     * 数据库分布式锁
     */
    public void checkAndLock() {
        // 加锁
        Lock lock = new Lock(null, "lock", this.getClass().getName(), new 
Date(), null);
        try {
            this.lockMapper.insert(lock);
       } catch (Exception ex) {
            // 获取锁失败,则重试
            try {
                Thread.sleep(50);
                this.checkAndLock();
           } catch (InterruptedException e) {
                e.printStackTrace();
           }
       }
        // 先查询库存是否充足
        Stock stock = this.stockMapper.selectById(1L);
        // 再减库存
        if (stock != null && stock.getCount() > 0){
            stock.setCount(stock.getCount() - 1);
            this.stockMapper.updateById(stock);
       }
        // 释放锁
        this.lockMapper.deleteById(lock.getId());
   }
}

加锁:  

// 加锁
Lock lock = new Lock(null, "lock", this.getClass().getName(), new Date(), null);
try {
    this.lockMapper.insert(lock);
} catch (Exception ex) {
    // 获取锁失败,则重试
    try {
        Thread.sleep(50);
        this.checkAndLock();
   } catch (InterruptedException e) {
        e.printStackTrace();
   }
}

解锁:

// 释放锁
this.lockMapper.deleteById(lock.getId());

使用Jmeter压力测试结果:

 可以看到性能感人。mysql数据库库存余量为0,可以保证线程安全。 

2.3. 缺陷及解决方案 

1. 这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。

解决方案:给锁数据库 搭建主备

2. 这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。

解决方案:只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。

3. 这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。

解决方案:记录获取锁的主机信息和线程信息,如果相同线程要获取锁,直接重入。

4. 受制于数据库性能,并发能力有限。

解决方案:无法解决。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/482197.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux CentOS本地搭建Web站点,并实现公网访问

文章目录 前言1. 本地搭建web站点2. 测试局域网访问3. 公开本地web网站3.1 安装cpolar内网穿透3.2 创建http隧道&#xff0c;指向本地80端口3.3 配置后台服务 4. 配置固定二级子域名5. 测试使用固定二级子域名访问本地web站点 转载自cpolar文章&#xff1a;Linux CentOS本地搭建…

ChatGPT提示词工程(六):Expanding扩展

目录 一、说明二、安装环境三、扩展&#xff08;Expanding&#xff09;1. 自定义自动回复客户电子邮件2. 提醒模型使用客户电子邮件中的详细信息3. 参数 temperature 一、说明 这是吴恩达 《ChatGPT Prompt Engineering for Developers》 的课程笔记系列。 本文是第六讲的内容…

linux编写脚本之快速入门

前言 在进行Linux测试时编写脚本是必不可少的。最近经常使用Linux&#xff0c;感觉太频繁地敲击键盘有些累了&#xff0c;于是想到了Shell脚本。可以把太多的命令写成一个脚本&#xff0c;这样每次执行一遍 shell文件&#xff0c;就可以省去了敲击键盘的时间。于是在网上搜了一…

3.7 虚拟存储器

学习目标&#xff1a; 建议按照以下学习目标进行学习&#xff1a; 了解虚拟存储器的基本概念和原理。包括什么是虚拟存储器、虚拟地址和物理地址、虚拟内存、页面置换算法等。 了解虚拟存储器的实现方式。包括基于请求分页、请求分段和请求段页混合的虚拟存储器实现方式&…

前置操作:Kubernetes快速安装组件Kubectl Kubeadam Kubeinit

文章目录 配置K8S主从集群前置准备操作一&#xff1a;主节点操作 查看主机域名->编辑域名1.1 编辑HOST 从节点也做相应操作1.2 从节点操作 查看从节点102域名->编辑域名1.3 从节点操作 查看从节点103域名->编辑域名 二&#xff1a;安装自动填充&#xff0c;虚拟机默认…

对接ChatGPT开发对话机器人小程序

前言 ChatGPT已经非常火爆了&#xff0c;企业开始招聘ChatGPT工程师&#xff0c;可能对接ChatGPT接口进行企业级开发是程序员必备的技能了。本篇文章主要是基于ChatGPT开发接口进行对接&#xff0c;使用微信小程序制作一款自己的聊天机器人&#xff0c;通过这一案例你可以展开…

图神经网络:在KarateClub上动手实现图神经网络

文章说明&#xff1a; 1)参考资料&#xff1a;PYG官方文档。超链。 2)博主水平不高&#xff0c;如有错误还望批评指正。 3)我在百度网盘上传了这篇文章的jupyter notebook。超链。提取码8888。 文章目录 文献阅读&#xff1a;代码实操&#xff1a; 文献阅读&#xff1a; 参考文…

JavaWeb05(删除增加修改功能实现连接数据库)

目录 一.实现删除功能 1.1 url如何传参&#xff1f; xx.do?参数参数值&参数名参数值 1.2 servlet如何拿对应值&#xff1f; //根据参数名拿到对应的参数值 String str req.getParameter("参数名") 1.3 如何询问&#xff1f; οnclick"return con…

区位码-GB2312

01-09区为特殊符号 10-15区为用户自定义符号区&#xff08;未编码&#xff09; 16-55区为一级汉字&#xff0c;按拼音排序 56-87区为二级汉字&#xff0c;按部首/笔画排序 88-94区为用户自定义汉字区&#xff08;未编码&#xff09; 特殊符号 区号:01 各类符号 0 1 2 3 4 …

I/O多路转接——epoll服务器代码编写

目录 一、poll​ 二、epoll 1.epoll 2.epoll的函数接口 ①epoll_create ②epoll_ctl ③epoll_wait 3.操作原理 三、epoll服务器编写 1.日志打印 2.TCP服务器 3.Epoll ①雏形 ②InitEpollServer 与 RunServer ③HandlerEvent 四、Epoll的工作模式 1.LT模式与ET…

第二十一章 光源

光源是每个场景必不可少的部分&#xff0c;光源除了能够照亮场景之外&#xff0c;还可以产生阴影效果。 Unity中分为四种光源类型&#xff1a; 1. 方向光&#xff1a;Directional Light 用于模拟太阳光&#xff0c;方向光任何地方都能照射到。 2. 点光源&#xff1a;Point L…

JavaWeb-Servlet【内含思维导图】

目录 Servlet思维导图​编辑 1.什么是Servlet 2.Servelt概述 3.Servlet-Quickstart Your Project 3.1创建一个Web项目&#xff0c;导入Servlet依赖 3.1.1 选择Servlet导入依赖 3.1.2 导入Servlet依赖 3.2 在Web项目&#xff0c;定义类&#xff0c;实现Servlet接口…

Java8新特性-流式操作

在Java8中提供了新特性—流式操作&#xff0c;通过流式操作可以帮助我们对数据更快速的进行一些过滤、排序、去重、最大、最小等等操作并且内置了并行流将流划分成多个线程进行并行执行&#xff0c;提供更高效、快速的执行能力。接下来我们一起看看Java8为我们新增了哪些便捷呢…

Python基础合集 练习19(类与对象3(多态))

多态 class Horse: def init(self, name) -> None: self.name name def fature(self):return 父亲-----马的名字: {0}.format(self.name)def mover(self):print(马儿跑起来很潇洒)class Monkey: def init(self, name) -> None: self.name name def fature(self):ret…

《用于准确连续非侵入性血压监测的心跳内生物标志物》阅读笔记

目录 0 基础知识 1 论文摘要 2 论文十问 3 实验结果 4 论文亮点与不足之处 5 与其他研究的比较 6 实际应用与影响 7 个人思考与启示 参考文献 0 基础知识 非侵入性是指在进行医学检查或治疗时&#xff0c;不需要切开皮肤或穿刺体内组织&#xff0c;而是通过外部手段进…

【VQGAN论文精读】Taming Transformers for High-Resolution Image Synthesis

【VQGAN论文精读】Taming Transformers for High-Resolution Image Synthesis 0、前言Abstract1. Introduction2. Related Work3. Approach3.1. Learning an Effective Codebook of Image Constituents for Use in Transformers学习一个有效的图像成分的Codebook为了在Transfor…

高性能:负载均衡

目录 什么是负载均衡 负载均衡分类 服务端负载均衡 服务端负载均衡——软硬件分类 服务端负载均衡——OSI模型分类 客户端负载均衡 负载均衡常见算法 七层负载均衡做法 DNS解析 反向代理 什么是负载均衡 将用户请求分摊&#xff08;分流&#xff09; 到不同的服务器上…

小记Java调用C++开发的动态链接库(DLL)

一、背景 五一快乐吖&#xff01;死肥宅正趁着五一这段时间&#xff0c;努力提升自己&#xff01; 最近使用Java拦截Windows系统中一些默认事件时&#xff0c;发现了一些瓶颈。 我用Java操作浏览器、用Java最小化其他应用窗口&#xff0c;但是我发现这个操作&#xff0c;他都…

【Unity-UGUI控件全面解析】| InputField 输入框组件详解

🎬【Unity-UGUI控件全面解析】| InputField 输入框组件详解一、组件介绍二、组件属性面板2.1 Content Type(内容类型)三、代码操作组件四、组件常用方法示例4.1 代码限制输入字符4.2 校验文本输入格式4.3 校验输入文本长度💯总结🎬 博客主页:https://xiaoy.blog.csdn.…

话说【永恒之塔sf】里面最有前途的职业:商人

如果有人问我永恒之塔里面什么职业最有前途&#xff01;那我告诉你就是商人&#xff01; 做一个NB商人比拥有一身牛b装备要更有成就感。 在老区由于进入的比较晚&#xff0c;所以最后随了大流被淹死在千万基纳中。为了证明商人在永恒之塔是钱途无量的&#xff0c;我转到了新区—…