企业需要数据整合、分析展现及应用的完整数据平台方案。为了满足集团化BI建设需求,企业决策层需要基于全局数据进行分析,需要提供数据整合、存储、计算到数据应用的端到端数据平台。
商业智能BI - 派可数据BI可视化分析平台
BI的实践落地需要全生命周期服务支持。BI的价值在于赋能业务决策,需要与业务场景深度融合,因此在前期需要全面洞察业务需求,并在项目推进及后期上线运营后能及时响应用户最新需求及使用问题,提供全生命周期服务支撑。
01 咨询规划
咨询规划是企业实现业务数据驱动的第一步,重在业务梳理和流程优化,并在此基础上确定BI所需数据,可划分为业务需求梳理、数据分析指标体系梳理和明确报表开发需求三个环节。
业务需求应结合企业发展阶段、企业业绩目标、部门业绩目标而定,主要是确定BI建设的关键KPI指标。关键KPI指标不应过多,否则会造成数据分析的精力分散、重点缺失。比如销售部门重点关注收入指标,运营部门重点关注成本指标,提升业务决策效率。数据分析指标体系梳理阶段,需要确定KPI指标所需数据,需要由企业和BI厂商配合完成梳理。
KPI考核 - 派可数据BI可视化分析平台
02 落地BI项目的步骤
数据治理是核心步骤,因为数据治理决定数据分析结果的准确性,最终将影响业务决策。
数据治理由于耗时长、工作繁重,往往需要大量人工手动补录检查,且人工经验判断可能存在偏差,会影响最终数据分析的结果。为避免后期重复劳动,企业应建立完备的数据录入规范,确保各部门基于统一标准录入数据,减少后期数据治理工作量。
03 持续运营衡量BI项目建设的成功与否,需要考察用户对系统的使用程度,用户对系统的长期使用与持续运营密不可分。
首先,降低BI使用门槛是提升用户使用率的重要因素。敏捷BI为用户自助式分析、建模提供便利,并支持在系统上进行二次开发,其出现大大降低了BI的使用门槛。
商业智能BI - 派可数据BI可视化分析平台
其次,BI厂商需要提供运营培训,引导用户使用习惯的转变,尤其是完成国产化BI替换的企业。
然后,需要定期的系统运维,提升BI系统使用程度和效率。一方面,需要BI厂商提供定期的系统运维及服务支持,及时解决用户在使用中的问题,让BI产品在企业内部使用起来。另一方面,BI系统需要在数据归档、ETL性能、报表、系统稳定性等方面加强系统维护,以应对系统运行一段时间后,数据量增大、业务复杂度提升的情况。
最后,需要结合用户需求,对产品进行持续迭代更新。用户需求在不断变化,需要及时了解用户最新的需求反馈,在产品升级迭代中融入能满足用户新需求的功能,保证BI在企业业务经营决策中的长期使用价值。
BI 项目带来的效益
1. 建设数据仓库 ,推动数据资产共享
打通从数据源到场景应用、数据挖掘的转化通道,以数字化方式解决经营、项目业务开展过程中的诸多难题,并将经营数据资产应用到集团全体。在此过程中,通过积累系统建设方法论、管理流程、人才队伍、项目实施等经验,为未来逐步深化应用到集团的各个业务板块,实现集团各业务的健康发展夯实基础
数据仓库 - 派可数据BI可视化分析平台
2. 减少人工统计数据,降本提效
利用数据分析系统,实现绩效KPI和管理方法的全面实时管控与信息传递,增加服务的质量与可控性,同时减少人工处理的工作,缩短信息统计分析周期,快速响应快速分析问题和绩效结果。
3. 提升业务数字化管理能力,建立数据分析能力
提供面向集团管理层、业务领导、业务人员的多层级的数字化信息看板,利用标准的指标描述,统一的数据口径,在发现问题,追溯问题,定位问题,解决问题过程中,各层级始终以数字化描述,提升集团整体业务数字化管理能力,也将提高业务人员数据处理效率和数据多维度分析能力,增强主管部门的数据应用与分析能力,从而为经营决策提供新的手段。
管理驾驶舱 - 派可数据BI可视化分析平台
4. 基于数据进行科学决策
通过数据整合、统一口径等手段,将有效提升数据准确度、完善度、标准度,利用各业务系统数据关联后的二次开发,将实现经营状况数字化分析,通过多终端、多场景的数据应用,提升指挥调度、应急响应能力。
同时数据的统一管理,将有效加强集团管控力度,通过建立“用数据说话、用数据管理、用数据决策”的管理机制,有效防范业务运行风险,为推进经营过程、项目管理业务治理能力数字化进程提供有力支撑。