【ChatGPT】中国支付清算协会倡议支付行业从业人员谨慎使用ChatGPT

news2024/11/28 18:50:08

在这里插入图片描述

ChatGPT

  • 1. 近期热议
  • 2. ChatGPT是什么
  • 3. ChatGPT要谨慎使用
  • 4. 如何规范使用

1. 近期热议

近期,ChatGPT等工具引起各方广泛关注,已有部分企业员工使用ChatGPT等工具开展工作。但是,此类智能化工具已暴露出跨境数据泄露等风险。为有效应对风险、保护客户隐私、维护数据安全,提升支付清算行业的数据安全管理水平,根据《中华人民共和国网络安全法》《中华人民共和国数据安全法》等法律规定,中国支付清算协会向行业发出倡议。

一是提高思想认识,依法依规使用。支付行业从业人员要遵守所在地区的网络使用规定,正确认识ChatGPT等工具的机遇和风险,全面评估使用ChatGPT等工具处理工作内容的风险,依法合规使用ChatGPT等工具。

二是不上传关键敏感信息。支付行业从业人员在使用ChatGPT等工具时,要严格遵守国家及行业相关法律法规要求,不上传国家及金融行业涉密文件及数据、本公司非公开的材料及数据、客户资料、支付清算基础设施或系统的核心代码等。

三是会员单位加强内部管理和引导。会员单位要进一步健全信息安全内控管理制度,开展有针对性的数据风险防控工作,加强宣传和引导,提升员工的风险防范和数据保护意识,切实维护国家金融及支付清算行业安全。

(来源:中国支付清算协会网站)

支付行业也关注到使用ChatGPT有可能造成的数据风险。昨天,中国支付清算协会公众号发布公告,倡议支付行业从业人员谨慎使用Chat-GPT等工具。

公告表示,已有部分企业员工使用ChatGPT等工具开展工作。但是,此类智能化工具暴露出跨境数据泄露等风险。为有效应对风险、保护客户隐私、维护数据安全,提升支付清算行业的数据安全管理水平,中国支付清算协会向行业发出倡议。

倡议提出,支付行业从业人员要全面评估使用ChatGPT等工具处理工作内容的风险,依法合规使用ChatGPT等工具。此外,要严格遵守国家及行业相关法律法规要求,不上传国家及金融行业涉密文件及数据、本公司非公开的材料及数据、客户资料、支付清算基础设施或系统的核心代码等。

金融行业分析师表示,Chat-GPT运行逻辑是通过大量的文本收集、数据训练回答客户问题。这意味着,即使用户是无意识的行为,也非常有可能造成个人信息和数据的泄露。

2. ChatGPT是什么

ChatGPT(全名:Chat Generative Pre-trained Transformer),美国OpenAI 研发的聊天机器人程序 ,于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过理解和学习人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文 等任务。

2023年4月,中国支付清算协会倡议支付行业从业人员谨慎使用ChatGPT。

3. ChatGPT要谨慎使用

2023年4月10日,中国支付清算协会表示,近期,ChatGPT等工具引起各方广泛关注,已有部分企业员工使用ChatGPT等工具开展工作。但是,此类智能化工具已暴露出跨境数据泄露等风险。为有效应对风险、保护客户隐私、维护数据安全,提升支付清算行业的数据安全管理水平,根据《中华人民共和国网络安全法》《中华人民共和国数据安全法》等法律规定,中国支付清算协会向行业发出倡议,倡议支付行业从业人员谨慎使用ChatGPT。
2023年3月27日,日本上智大学在其官网上发布了关于“ChatGPT 和其他 AI 聊天机器人”的评分政策。该政策规定,未经导师许可,不允许在任何作业中使用 ChatGPT 和其他 AI 聊天机器人生成的文本、程序源代码、计算结果等。如果发现使用了这些工具,将会采取严厉措施。
2023年4月3日,东京大学在其内部网站上发布了一份题为“关于生成式人工智能”的文件,文件指出,“报告必须由学生自己创造,不能完全借助人工智能来创造”。
2023年4月7日,京都大学的入学仪式上,该大学校长凑长博表示,“人工智能生成的论文有很多问题,写作需要耗费大量精力,但它会加强你的心态和思考能力。”
日本东北大学在其官方网站上发布了一份关于使用生成式人工智能的通知,并敦促教师们重新思考如何布置作业和如何进行考试。例如,它建议“在布置练习和报告之前检查人工智能将如何回答”,以及“改用要求学生在课堂上写作的考试形式”。

4. 如何规范使用

2023年2月,媒体报道,欧盟负责内部市场的委员蒂埃里·布雷东日前就“聊天生成预训练转换器”发表评论说,这类人工智能技术可能为商业和民生带来巨大的机遇,但同时也伴随着风险,因此欧盟正在考虑设立规章制度,以规范其使用,确保向用户提供高质量、有价值的信息和数据。
2023年3月,全国人大代表、科大讯飞董事长刘庆峰提出:类ChatGPT可能是人工智能最大技术跃迁,应当加快推进中国认知智能大模型建设,在自主可控平台上让行业尽快享受AI红利,让每个人都有AI助手。

做到以下四点:保护人格法益、保护信息安全、保护著作权、认识民事法律行为

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/428493.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

物业企业如何加快向现代服务业转型

近年来,随着人民生活水平的提高,人们对住宅质量提出更高的要求,在此前提下,全国各地涌现出了一些运用现代的计算机、控制与通信技术建设的智能化住宅小区。但是许多智能化住宅小区都存在建好了智能硬件环境却没有智能化的软件在上…

基于html+css的图片展示14

准备项目 项目开发工具 Visual Studio Code 1.44.2 版本: 1.44.2 提交: ff915844119ce9485abfe8aa9076ec76b5300ddd 日期: 2020-04-16T16:36:23.138Z Electron: 7.1.11 Chrome: 78.0.3904.130 Node.js: 12.8.1 V8: 7.8.279.23-electron.0 OS: Windows_NT x64 10.0.19044 项目…

在现代信号处理中,多种时频分析方法可以进行融合吗?

当然可以,以短时傅里叶变换STFT和WVD分析为例进行说明。 STFT得到的时频矩阵没有交叉项的干扰,但时频聚集性无法兼得;而WVD恰恰相反,其时频矩阵 能兼顾时频聚集性,但对多分量信号进行处理会产生交叉项。 为获得时频聚…

axial attention 轴向注意力

Medical Transformer: Gated Axial-Attention for Medical Image Segmentation 论文解读: https://zhuanlan.zhihu.com/p/408662947 实验结果: 0 前言 0.1 原始的注意力机制 0.2 轴向注意力机制 相对位置编码 0.3 在轴向注意力机制基础上 gated 门控单元 门控轴…

pytest测试报告Allure - 动态生成标题生成功能、添加用例失败截图

一、动态生成标题 默认 allure 报告上的测试用例标题不设置就是用例名称,其可读性不高;当结合 pytest.mark.parametrize 参数化完成数据驱动时,如标题写死,其可读性也不高。 那如果希望标题可以动态的生成,采取的方案…

(附3D大屏模板)详解FineVis如何打造智慧医院BIM方案!

近日,又一所三甲医院搭建起了智慧医院,它是深圳大鹏新区人民医院,采用IBM技术,是一家集医疗、科研、预防保健和康复疗养功能的综合体。 这栋建筑包含床位数2000个,总建筑面积417444平方米,建筑高度79.75米…

第四章 法的效力

目录 第一节 法的效力概述 一、法的效力的意义二、法的效力的概念三、法的效力范围 第二节法的时间效力 一、法的生效时间二、法的失效时间三、法律溯及力 第三节法的空间效力 一、法的域内效力二、法的域外效力 第四节 法的对人效力 一、对人效力的原则二、我国法律的对人效力…

epoll 反应堆模型(Libevent库核心思想)

epoll 反应堆模型总述 epoll 反应堆模型是从 libevent 库里面抽取的核心代码。 epoll ET模式 非阻塞、轮询 void *ptr 反应堆的理解:参考理解 加入IO转接之后,有了事件,server才去处理,这里反应堆也是这样,由于网络…

ssm框架之SpringMVC:浅聊获得参数以及获得请求头参数

前面聊过了SpringMVC,以及通过实例演示了SpringMVC如何搭建,如果对环境搭建不太了解的话,可以看一下前面的文章(下面演示的例子,环境都是通过上面的例子进行演示的):传送阵 在使用javaweb项目原…

30天学会《Streamlit》(2)

30学会《Streamlit》是一项编码挑战,旨在帮助您开始构建Streamlit应用程序。特别是,您将能够: 为构建Streamlit应用程序设置编码环境 构建您的第一个Streamlit应用程序 了解用于Streamlit应用程序的所有很棒的输入/输出小部件 第2天 - 构建…

Kubernetes部署Nacos集群

一、k8s架构 master: 11.0.1.3 node: 11.0.1.4,11.0.1.5(nfs) nfs: 11.0.1.5 二、安装nfs 安装nfs-utils和rpcbind nfs客户端和服务端都安装nfs-utils包 yum install nfs-utils rpcbind -y创建共享目录 mkdir -p /nfsdata chmod 777 /nfsdata编辑/etc/exports文件添加如下…

【部署项目】记录一些踩到的坑

这里写自定义目录标题记录一些踩到的坑设置二级域名注意事项文件访问权限记录一些踩到的坑 这个帖子是用来记录自己在windows和linux下进行部署项目时遇到的坑,以及对应的解决办法 设置二级域名 当你只有一个域名又不想买新的域名的时候(域名其实很便宜,贵在租服务器上),二级…

剖析多利熊业务如何基于分布式架构实践稳定性建设

作者 | 百度小程序团队 导读 多利熊稳定性建设,是指为了确保系统或服务,在生产环境中的稳定性而采取的一系列措施和优化。这包括但不限于监控、预警、容错、自动化、规范、质量等方面的优化。通过稳定性建设,可以提高系统的可靠性和可用性&am…

sysbench压测MySQL8问题记录

数据库版本:MySQL8.0.26 sysbench版本:sysbench 1.0.17 CentOS版本:CentOS Linux release 7.9.2009 (Core) 问题一:FATAL: error 2059: Authentication plugin ‘caching_sha2_password’ cannot be loaded 执行 sysbench /usr/…

【论文阅读】3D-LaneNet

【论文阅读】3D-LaneNet 主要要做的事情就是 lane detection。这里提一下 BEV(Bird‘s Eye View) 感知算法,为了将 2D 图像映射到 3D 空间中,能够更准确的检测物体位置,需要 BEV 感知的结果。后续还会继续了解这方面内…

论文阅读【17】Dynamic ensemble learning for multi-label classification

论文十问十答: Q1论文试图解决什么问题? Q2这是否是一个新的问题? Q3这篇文章要验证一个什么科学假设? Q4有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员? Q5论文中提到的解决方…

研究LLMs之前,不如先读读这五篇论文!

目标:了解 LMM 背后的主要思想 ▪️ Neural Machine Translation by Jointly Learning to Align and Translate ▪️ Attention Is All You Need ▪️ BERT ▪️ Improving Language Understanding by Generative Pre-Training ▪️ BART Neural Machine Translati…

引导程序、BIOS中断、检测内存容量、实模式切换到保护模式

初始化引导程序 基本概念 BIOS会将磁盘的第0个扇区(大小为512字节),加载到0x7c00处。 引导程序负责操作系统的加载,主要用于为操作系统运行提供初始化环境,并运行加载操作系统。 BIOS只加载磁盘的第0个扇区(512字节)到内存中,次程…

【论文阅读_序列推荐】Intent Contrastive Learning for Sequential Recommendation

【论文阅读_序列推荐】Intent Contrastive Learning for Sequential Recommendation 文章目录【论文阅读_序列推荐】Intent Contrastive Learning for Sequential Recommendation1. 来源2. 介绍3. 准备工作3.1 问题定义3.2 用于下一个项目预测的深度 SR 模型3.3 SR中的对比SSL …

基于springboot和ajax的简单项目 06 日志界面的delete功能(根据选择的checkbox)

01.这次后台开始&#xff1b; 顺序依次是dao->xml->service->serviceimpl->controller->html 02.dao接口 public int doDeleteObjects(Param("ids") Integer... ids);03.xml文件 <update id"doDeleteObjects" >delete from sys_lo…