NVIDIA jetson tensorrt加速yolov5摄像头检测

news2025/1/14 0:53:11

link

在使用摄像头直接检测目标时,检测的实时画面还是有点慢,下面是tensorrt加速过程记录。

一、设备

1、设备jetson agx xavier

2、jetpack4.6.1

3、tensorrt 8.2.1.8

4、conda虚拟环境 python=3.6

二、虚拟环境搭建及依赖

1、参考此博客安装torch

Nvidia jetson xavier agx 安装pytorch1.9.0 Gpu版_Ponnyao的博客-CSDN博客_xavier安装pytorch

2、安装pycuda


  
  1. conda activate pytorch #我的虚拟环境名字是pytorch
  2. pip3 install pycuda

3、虚拟环境中使用tensorrt


  
  1. #查看tensorrt路径
  2. sudo find / -name tensorrt *
  3. #进入虚拟环境的此路径
  4. cd /home /nvidia /archiconda /envs /pytorch /lib /python 3.6 /site-packages
  5. #设置软连接
  6. ln -s /usr /lib /python 3.6 /dist-packages /tensorrt
  7. #上一步不行的话用这个
  8. ln -s /usr /lib /python 3.6 /dist-packages /tensorrt /tensorrt.so

三、加速过程

        我的项目yolov5_tensorrt-深度学习文档类资源-CSDN下载

1、下载项目

以yolov5 _6.0为例


  
  1. mkidr yolov 5_tensorrt
  2. cd yolov 5_tensorrt
  3. git clone -b v 6.0 https: / /github.com /ultralytics /yolov 5.git
  4. git clone https: / /github.com /wang-xinyu /tensorrtx.git

2、下载yolov5s.pt文件

下载后,放到 yolov5_tensorrt/yolov5文件夹下

https://github.com/ultralytics/yolov5/releases/tag/v6.0
  

3、转换模型pt->wts


  
  1. cp yolov 5_tensorrt /tensorrtx /yolov 5 /gen_wts.py yolov 5_tensorrt /yolov 5
  2. cd yolov 5_tensorrt /yolov 5
  3. python 3 gen_wts.py -w yolov 5s.pt -o yolov 5s.wts

4、生成引擎文件


  
  1. cd yolov 5_tensorrt /tensorrtx /yolov 5 /
  2. mkdir build
  3. cd build
  4. cp yolov 5_tensorrt /yolov 5 /yolov 5s.wts yolov 5_tensorrt /tensorrtx /yolov 5 /build
  5. cmake ..
  6. make
  7. sudo . /yolov 5 -s yolov 5s.wts yolov 5s.engine s

生成yolov5s.engine。

5、摄像头加速

原作者只有图片加速,下面是大神修改的摄像头加速文件。

yolov5_trt_cam.py


  
  1. "" "
  2. An example that uses TensorRT's Python api to make inferences.
  3. " ""
  4. import ctypes
  5. import os
  6. import shutil
  7. import random
  8. import sys
  9. import threading
  10. import time
  11. import cv 2
  12. import numpy as np
  13. import pycuda.autoinit
  14. import pycuda.driver as cuda
  15. import tensorrt as trt
  16. import torch
  17. import torchvision
  18. import argparse
  19. CONF_THRESH = 0.5
  20. IOU_THRESHOLD = 0.4
  21. def get_img_path_batches(batch_ size, img_dir):
  22. ret = []
  23. batch = []
  24. for root, dirs, files in os.walk(img_dir):
  25. for name in files:
  26. if len(batch) = = batch_ size:
  27. ret.append(batch)
  28. batch = []
  29. batch.append(os.path.join(root, name))
  30. if len(batch) > 0:
  31. ret.append(batch)
  32. return ret
  33. def plot_one_box(x, img, color =None, label =None, line_thickness =None):
  34. "" "
  35. description: Plots one bounding box on image img,
  36. this function comes from YoLov5 project.
  37. param:
  38. x: a box likes [x1,y1,x2,y2]
  39. img: a opencv image object
  40. color: color to draw rectangle, such as (0,255,0)
  41. label: str
  42. line_thickness: int
  43. return:
  44. no return
  45. " ""
  46. tl = (
  47. line_thickness or round( 0.002 * (img.shape[ 0] + img.shape[ 1]) / 2) + 1
  48. ) # line /font thickness
  49. color = color or [ random.randint( 0, 255) for _ in range( 3)]
  50. c1, c 2 = (int(x[ 0]), int(x[ 1])), (int(x[ 2]), int(x[ 3]))
  51. cv 2.rectangle(img, c 1, c 2, color, thickness =tl, lineType =cv 2. LINE_AA)
  52. if label:
  53. tf = max(tl - 1, 1) # font thickness
  54. t_ size = cv 2.getTextSize(label, 0, fontScale =tl / 3, thickness =tf)[ 0]
  55. c 2 = c 1[ 0] + t_ size[ 0], c 1[ 1] - t_ size[ 1] - 3
  56. cv 2.rectangle(img, c 1, c 2, color, - 1, cv 2. LINE_AA) # filled
  57. cv 2.putText(
  58. img,
  59. label,
  60. (c 1[ 0], c 1[ 1] - 2),
  61. 0,
  62. tl / 3,
  63. [ 225, 255, 255],
  64. thickness =tf,
  65. lineType =cv 2. LINE_AA,
  66. )
  67. class YoLov 5TRT( object):
  68. "" "
  69. description: A YOLOv5 class that warps TensorRT ops, preprocess and postprocess ops.
  70. " ""
  71. def __init__( self, engine_ file_path):
  72. # Create a Context on this device,
  73. self.ctx = cuda.Device( 0).make_context()
  74. stream = cuda.Stream()
  75. TRT_LOGGER = trt.Logger(trt.Logger.INFO)
  76. runtime = trt.Runtime(TRT_LOGGER)
  77. # Deserialize the engine from file
  78. with open(engine_ file_path, "rb") as f:
  79. engine = runtime.deserialize_cuda_engine(f. read())
  80. context = engine.create_execution_context()
  81. host_inputs = []
  82. cuda_inputs = []
  83. host_outputs = []
  84. cuda_outputs = []
  85. bindings = []
  86. for binding in engine:
  87. print( 'bingding:', binding, engine. get_binding_shape(binding))
  88. size = trt.volume(engine. get_binding_shape(binding)) * engine.max_batch_ size
  89. dtype = trt.nptype(engine. get_binding_dtype(binding))
  90. # Allocate host and device buffers
  91. host_mem = cuda.pagelocked_empty( size, dtype)
  92. cuda_mem = cuda.mem_alloc(host_mem.nbytes)
  93. # Append the device buffer to device bindings.
  94. bindings.append(int(cuda_mem))
  95. # Append to the appropriate list.
  96. if engine.binding_ is_ input(binding):
  97. self. input_w = engine. get_binding_shape(binding)[- 1]
  98. self. input_h = engine. get_binding_shape(binding)[- 2]
  99. host_inputs.append(host_mem)
  100. cuda_inputs.append(cuda_mem)
  101. else:
  102. host_outputs.append(host_mem)
  103. cuda_outputs.append(cuda_mem)
  104. # Store
  105. self.stream = stream
  106. self.context = context
  107. self.engine = engine
  108. self.host_inputs = host_inputs
  109. self.cuda_inputs = cuda_inputs
  110. self.host_outputs = host_outputs
  111. self.cuda_outputs = cuda_outputs
  112. self.bindings = bindings
  113. self.batch_ size = engine.max_batch_ size
  114. def infer( self, input_image_path):
  115. threading.Thread.__init__( self)
  116. # Make self the active context, pushing it on top of the context stack.
  117. self.ctx.push()
  118. self. input_image_path = input_image_path
  119. # Restore
  120. stream = self.stream
  121. context = self.context
  122. engine = self.engine
  123. host_inputs = self.host_inputs
  124. cuda_inputs = self.cuda_inputs
  125. host_outputs = self.host_outputs
  126. cuda_outputs = self.cuda_outputs
  127. bindings = self.bindings
  128. # Do image preprocess
  129. batch_image_raw = []
  130. batch_origin_h = []
  131. batch_origin_w = []
  132. batch_ input_image = np.empty(shape =[ self.batch_ size, 3, self. input_h, self. input_w])
  133. input_image, image_raw, origin_h, origin_w = self.preprocess_image( input_image_path
  134. )
  135. batch_origin_h.append(origin_h)
  136. batch_origin_w.append(origin_w)
  137. np.copyto(batch_ input_image, input_image)
  138. batch_ input_image = np.ascontiguousarray(batch_ input_image)
  139. # Copy input image to host buffer
  140. np.copyto(host_inputs[ 0], batch_ input_image.ravel())
  141. start = time. time()
  142. # Transfer input data to the GPU.
  143. cuda.memcpy_htod_async(cuda_inputs[ 0], host_inputs[ 0], stream)
  144. # Run inference.
  145. context.execute_async(batch_ size = self.batch_ size, bindings =bindings, stream_handle =stream.handle)
  146. # Transfer predictions back from the GPU.
  147. cuda.memcpy_dtoh_async(host_outputs[ 0], cuda_outputs[ 0], stream)
  148. # Synchronize the stream
  149. stream.synchronize()
  150. end = time. time()
  151. # Remove any context from the top of the context stack, deactivating it.
  152. self.ctx.pop()
  153. # Here we use the first row of output in that batch_ size = 1
  154. output = host_outputs[ 0]
  155. # Do postprocess
  156. result_boxes, result_scores, result_classid = self.post_process(
  157. output, origin_h, origin_w)
  158. # Draw rectangles and labels on the original image
  159. for j in range(len(result_boxes)):
  160. box = result_boxes[j]
  161. plot_one_box(
  162. box,
  163. image_raw,
  164. label = "{}:{:.2f}". format(
  165. categories[int(result_classid[j])], result_scores[j]
  166. ),
  167. )
  168. return image_raw, end - start
  169. def destroy( self):
  170. # Remove any context from the top of the context stack, deactivating it.
  171. self.ctx.pop()
  172. def get_raw_image( self, image_path_batch):
  173. "" "
  174. description: Read an image from image path
  175. " ""
  176. for img_path in image_path_batch:
  177. yield cv 2.imread(img_path)
  178. def get_raw_image_ zeros( self, image_path_batch =None):
  179. "" "
  180. description: Ready data for warmup
  181. " ""
  182. for _ in range( self.batch_ size):
  183. yield np. zeros([ self. input_h, self. input_w, 3], dtype =np.uint 8)
  184. def preprocess_image( self, input_image_path):
  185. "" "
  186. description: Convert BGR image to RGB,
  187. resize and pad it to target size, normalize to [0,1],
  188. transform to NCHW format.
  189. param:
  190. input_image_path: str, image path
  191. return:
  192. image: the processed image
  193. image_raw: the original image
  194. h: original height
  195. w: original width
  196. " ""
  197. image_raw = input_image_path
  198. h, w, c = image_raw.shape
  199. image = cv 2.cvtColor(image_raw, cv 2.COLOR_BGR 2RGB)
  200. # Calculate widht and height and paddings
  201. r_w = self. input_w / w
  202. r_h = self. input_h / h
  203. if r_h > r_w:
  204. tw = self. input_w
  205. th = int(r_w * h)
  206. tx 1 = tx 2 = 0
  207. ty 1 = int(( self. input_h - th) / 2)
  208. ty 2 = self. input_h - th - ty 1
  209. else:
  210. tw = int(r_h * w)
  211. th = self. input_h
  212. tx 1 = int(( self. input_w - tw) / 2)
  213. tx 2 = self. input_w - tw - tx 1
  214. ty 1 = ty 2 = 0
  215. # Resize the image with long side while maintaining ratio
  216. image = cv 2.resize(image, (tw, th))
  217. # Pad the short side with ( 128,128,128)
  218. image = cv 2.copyMakeBorder(
  219. image, ty 1, ty 2, tx 1, tx 2, cv 2.BORDER_ CONSTANT, ( 128, 128, 128)
  220. )
  221. image = image.astype(np.float 32)
  222. # Normalize to [ 0,1]
  223. image / = 255.0
  224. # HWC to CHW format:
  225. image = np.transpose(image, [ 2, 0, 1])
  226. # CHW to NCHW format
  227. image = np.expand_dims(image, axis = 0)
  228. # Convert the image to row-major order, also known as "C order":
  229. image = np.ascontiguousarray(image)
  230. return image, image_raw, h, w
  231. def xywh 2xyxy( self, origin_h, origin_w, x):
  232. "" "
  233. description: Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
  234. param:
  235. origin_h: height of original image
  236. origin_w: width of original image
  237. x: A boxes tensor, each row is a box [center_x, center_y, w, h]
  238. return:
  239. y: A boxes tensor, each row is a box [x1, y1, x2, y2]
  240. " ""
  241. y = torch. zeros_like(x) if isinstance(x, torch.Tensor) else np. zeros_like(x)
  242. r_w = self. input_w / origin_w
  243. r_h = self. input_h / origin_h
  244. if r_h > r_w:
  245. y[:, 0] = x[:, 0] - x[:, 2] / 2
  246. y[:, 2] = x[:, 0] + x[:, 2] / 2
  247. y[:, 1] = x[:, 1] - x[:, 3] / 2 - ( self. input_h - r_w * origin_h) / 2
  248. y[:, 3] = x[:, 1] + x[:, 3] / 2 - ( self. input_h - r_w * origin_h) / 2
  249. y / = r_w
  250. else:
  251. y[:, 0] = x[:, 0] - x[:, 2] / 2 - ( self. input_w - r_h * origin_w) / 2
  252. y[:, 2] = x[:, 0] + x[:, 2] / 2 - ( self. input_w - r_h * origin_w) / 2
  253. y[:, 1] = x[:, 1] - x[:, 3] / 2
  254. y[:, 3] = x[:, 1] + x[:, 3] / 2
  255. y / = r_h
  256. return y
  257. def post_process( self, output, origin_h, origin_w):
  258. "" "
  259. description: postprocess the prediction
  260. param:
  261. output: A tensor likes [num_boxes,cx,cy,w,h,conf,cls_id, cx,cy,w,h,conf,cls_id, ...]
  262. origin_h: height of original image
  263. origin_w: width of original image
  264. return:
  265. result_boxes: finally boxes, a boxes tensor, each row is a box [x1, y1, x2, y2]
  266. result_scores: finally scores, a tensor, each element is the score correspoing to box
  267. result_classid: finally classid, a tensor, each element is the classid correspoing to box
  268. " ""
  269. # Get the num of boxes detected
  270. num = int( output[ 0])
  271. # Reshape to a two dimentional ndarray
  272. pred = np.reshape( output[ 1:], (- 1, 6))[:num, :]
  273. # to a torch Tensor
  274. pred = torch.Tensor(pred).cud a()
  275. # Get the boxes
  276. boxes = pred[:, : 4]
  277. # Get the scores
  278. scores = pred[:, 4]
  279. # Get the classid
  280. classid = pred[:, 5]
  281. # Choose those boxes that score > CONF_THRESH
  282. si = scores > CONF_THRESH
  283. boxes = boxes[si, :]
  284. scores = scores[si]
  285. classid = classid[si]
  286. # Trandform bbox from [center_x, center_y, w, h] to [x 1, y 1, x 2, y 2]
  287. boxes = self.xywh 2xyxy(origin_h, origin_w, boxes)
  288. # Do nms
  289. indices = torchvision.ops.nms(boxes, scores, iou_threshold =IOU_THRESHOLD).cpu()
  290. result_boxes = boxes[indices, :].cpu()
  291. result_scores = scores[indices].cpu()
  292. result_classid = classid[indices].cpu()
  293. return result_boxes, result_scores, result_classid
  294. class inferThread(threading.Thread):
  295. def __init__( self, yolov 5_wrapper):
  296. threading.Thread.__init__( self)
  297. self.yolov 5_wrapper = yolov 5_wrapper
  298. def infer( self , frame):
  299. batch_image_raw, use_ time = self.yolov 5_wrapper.infer(frame)
  300. # for i, img_path in enumerate( self.image_path_batch):
  301. # parent, filename = os.path.split(img_path)
  302. # save_name = os.path.join( 'output', filename)
  303. # # Save image
  304. # cv 2.imwrite(save_name, batch_image_raw[i])
  305. # print( 'input->{}, time->{:.2f}ms, saving into output/'. format( self.image_path_batch, use_ time * 1000))
  306. return batch_image_raw, use_ time
  307. class warmUpThread(threading.Thread):
  308. def __init__( self, yolov 5_wrapper):
  309. threading.Thread.__init__( self)
  310. self.yolov 5_wrapper = yolov 5_wrapper
  311. def run( self):
  312. batch_image_raw, use_ time = self.yolov 5_wrapper.infer( self.yolov 5_wrapper. get_raw_image_ zeros())
  313. print( 'warm_up->{}, time->{:.2f}ms'. format(batch_image_raw[ 0].shape, use_ time * 1000))
  314. if __name__ = = "__main__":
  315. # load custom plugins
  316. parser = argparse.ArgumentParser()
  317. parser. add_argument( '--engine', nargs = '+', type =str, default = "build/yolov5s.engine", help = '.engine path(s)')
  318. parser. add_argument( '--save', type =int, default = 0, help = 'save?')
  319. opt = parser.parse_args()
  320. PLUGIN_LIBRARY = "build/libmyplugins.so"
  321. engine_ file_path = opt.engine
  322. ctypes.CDLL(PLUGIN_LIBRARY)
  323. # load coco labels
  324. categories = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
  325. "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
  326. "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
  327. "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
  328. "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
  329. "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
  330. "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
  331. "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
  332. "hair drier", "toothbrush"]
  333. # a YoLov 5TRT instance
  334. yolov 5_wrapper = YoLov 5TRT(engine_ file_path)
  335. cap = cv 2.VideoCapture( 0)
  336. try:
  337. thread 1 = inferThread(yolov 5_wrapper)
  338. thread 1. start()
  339. thread 1.join()
  340. while 1:
  341. _,frame = cap. read()
  342. img,t =thread 1.infer(frame)
  343. cv 2.imshow( "result", img)
  344. if cv 2.waitKey( 1) & 0XFF = = ord( 'q'): # 1 millisecond
  345. break
  346. finally:
  347. # destroy the instance
  348. cap. release()
  349. cv 2.destroyAllWindows()
  350. yolov 5_wrapper.destroy()

参考

tensorrtx/yolov5 at master · wang-xinyu/tensorrtx · GitHub

Jetson AGX Xavier实现TensorRT加速YOLOv5进行实时检测_围白的尾巴的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/415951.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

做自动化测试时所谓的“难点”

这篇关于自动化测试的文章,可能和你看到的大多数自动化的文章有所不同。我不是一位专职的自动化测试工程师,没有开发过自动化的工具或者框架,用的自动化的工具也不多,也没有做过开发,所以我讲不出那些现在很多人很看重…

[C++]日期类计算器的模拟实现

目录 日期类计算器的模拟实现:: 1.获取某年某月的天数 2.构造函数 3.拷贝构造函数 4.赋值运算符重载 5.析构函数 6.日期天数 7.日期天数 8.日期-天数 9.日期-天数 10.前置的运算符重载 11.后置的运算符重载 12.前置--的运算符重载 13.后置--的运算符重载…

前后端交互系列之Axios详解(包括拦截器)

目录前言一,服务器的搭建二,Axios的基本使用2.1 Axios的介绍及页面配置2.2 如何安装2.3 Axios的前台代码2.4 Axios的基本使用2.5 axios请求响应结果的结构2.6 带参数的axios请求2.7 axios修改默认配置三,axios拦截器3.1 什么是拦截器3.2 拦截…

Go分布式爬虫笔记(二十)

文章目录20 调度引擎调度引擎目标通道函数选项模式函数式选项模式的好处通道底层原理无缓冲区的通道带缓冲区的通道Select 机制的底层原理思考题在我们的课程中,schedule 函数其实有一个 bug,您能看出来吗?你觉得可以用什么方式找出这样的 Bu…

OTA A/B 分区升级 update_engine简介

近期猛然发现公司的项目都已经换成了AB升级,AB升级之前一直有所了解,只是一直都没有去仔细查看过其具体升级流程,这两天抽空捋了捋,简单整理下。 AB升级(谷歌官网叫法无缝更新)是自android7.0开始新增的一…

头歌(Linux之进程管理一):第2关:进程创建操作-fork

任务描述 在上一关我们学习如何获取进程的pid信息,本关我们将介绍如何编程创建一个新的进程。 本关任务:学会使用C语言在Linux系统中使用fork系统调用创建一个新的进程。 相关知识 在Linux系统中创建进程有很多函数可以使用,其中包括了系…

初识Elasticsearch

文章目录介绍一、什么是elasticsearch?二、基本概念三、安装elasticsearch与kibana四、安装kibana(跟ES要在同一个网络中)五、IK分词器总结介绍 好处:可以帮助从海量数据中查找需要的内容; 一、什么是elasticsearch&…

ETL工具-pentaho企业实战部署

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

C++二叉搜索树与KV模型

二叉搜索树与KV模型二叉搜索树概念与操作性能分析实现KV模型二叉搜索树 本章是为了C的map和set做铺垫 概念与操作 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小…

面试题之vue的响应式

文章目录前言一、响应式是什么?二、Object.defineProperty二、简单模拟vue三、深度监听四、监听数组总结前言 为了应对面试而进行的学习记录,可能不够有深度甚至有错误,还请各位谅解,并不吝赐教,共同进步。 一、响应式…

如何做好 IT 项目管理?做好项目管理常用的9大项目管理平台、7大管理方法

一个好的管理,是70%在流程、规范、工具,剩下的30%自由发挥。一个不好的管理,只有地板,每个人都要自己想办法,够到天花板。一个好的工具,就是帮助团队够到天花板的台阶。——刘润 项目管理是一门复杂的艺术&…

统一的文件管理,团队轻松协作

目前IT行业大都采用项目经理制的管理方式,这种管理方式下各个部门间相互独立,同时各部门间也缺乏沟通协作。因此IT行业在文件管理上主要面临以下几个问题: 文档缺乏集中管理:企业在管理过程中产生的大量文件分散在各个部门中&…

Python升级 pip : python -m pip install --upgrade pip,socket.timeout加入超时处理方法

人生苦短,我用python 最近又遇到了一个小的报错问题, 趁现在我还没有忘记, 赶紧来写一写… python 安装包资料报错交流:点击此处跳转文末名片获取 WARNING: You are using pip version 19.3.1; however, version 20.0.2 is available. You…

系统学习Numpy(一)——numpy的安装与基础入门[向量、矩阵]

系列文章目录 numpy的安装与基础入门[向量、矩阵与维度] numpy的安装与基础入门[向量、矩阵与维度]系列文章目录前言numpy安装向量与矩阵生成向量生成矩阵向量类型前言 numpy是科学计算以及机器学习深度学习的基础必备工具,本文将介绍numpy的安装,以及…

C语言课设项目-51单片机-中断系统

(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 51单片机的中断系统 一、中断的概念 二、51单片机的中断系统结构 三、中断允许控制 四、中断…

C#,初学琼林(06)——组合数的算法、数据溢出问题的解决方法及相关C#源代码

1 排列permutation 排列,一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列(permutation)。特别地,当mn时,这个排列被称作全…

vs code c语言断点调试window版解决方案

序: 1、这一步不懂劝退多少人,博主搜到了多少博文都是mac的,结果发现都对不上! 先看最终效果演示 接下去我每个步骤,你都仔细看,漏看一个环境都对不上! 正文 1、先去看博主的c/c运行环境配置图…

10-vue3动画

文章目录1.vue的transition动画1.1transition的基本使用1.2transition组件的原理1.3过渡动画的class1.4class的命名规则和添加时机1.5显示的指定过渡时间1.6过渡的模式mode1.7动态组件的切换1.8.appear初次渲染2、animation动画2.1同时设置animation和transition3.结合第三方库…

【Bard】来自谷歌的“吟游诗人”

个人主页:【😊个人主页】 文章目录前言Bard与相关产品的对比Bard VS 弱智吧来自对手的评论ChatGPT文心一言总结:前言 相比较ChatGPT的话题不断,谷歌的“Bard”显然低调了许多,在“画大饼”失败一个多月后&#xff0c…

【Python开发手册】深入剖析Google Python开发规范:规范Python注释写作

💖 作者简介:大家好,我是Zeeland,全栈领域优质创作者。📝 CSDN主页:Zeeland🔥📣 我的博客:Zeeland📚 Github主页: Undertone0809 (Zeeland) (github.com)&…