题目链接
Leetcode.1992 找到所有的农场组 Rating : 1539
题目描述
给你一个下标从 0 开始,大小为 m x n 的二进制矩阵 land ,其中 0 表示一单位的森林土地,1 表示一单位的农场土地。
为了让农场保持有序,农场土地之间以矩形的 农场组 的形式存在。每一个农场组都 仅 包含农场土地。且题目保证不会有两个农场组相邻,也就是说一个农场组中的任何一块土地都 不会 与另一个农场组的任何一块土地在四个方向上相邻。
land 可以用坐标系统表示,其中 land 左上角坐标为 (0, 0) ,右下角坐标为 (m-1, n-1) 。请你找到所有 农场组 最左上角和最右下角的坐标。一个左上角坐标为 (r1, c1) 且右下角坐标为 (r2, c2) 的 农场组 用长度为 4 的数组 [r1, c1, r2, c2] 表示。
请你返回一个二维数组,它包含若干个长度为 4 的子数组,每个子数组表示 land 中的一个 农场组 。如果没有任何农场组,请你返回一个空数组。可以以 任意顺序 返回所有农场组。
示例 1:
输入:land = [[1,0,0],[0,1,1],[0,1,1]]
输出:[[0,0,0,0],[1,1,2,2]]
解释:
第一个农场组的左上角为 land[0][0] ,右下角为 land[0][0] 。
第二个农场组的左上角为 land[1][1] ,右下角为 land[2][2] 。
示例 2:
输入:land = [[1,1],[1,1]]
输出:[[0,0,1,1]]
解释:
第一个农场组左上角为 land[0][0] ,右下角为 land[1][1] 。
示例 3:
输入:land = [[0]]
输出:[]
解释:
没有任何农场组。
提示:
- m = = l a n d . l e n g t h m == land.length m==land.length
- n = = l a n d [ i ] . l e n g t h n == land[i].length n==land[i].length
- 1 < = m , n < = 300 1 <= m, n <= 300 1<=m,n<=300
land
只包含 0 和 1 。- 农场组都是 矩形 的形状。
解法:dfs
我们在 dfs 遍历 农场组 (全为 1 的位置 )时,需要记录这个农场组的 左上节点 ( x 1 , y 1 ) (x1,y1) (x1,y1) 和 右下节点 ( x 2 , y 2 ) (x2,y2) (x2,y2)。
由于我们是从左上角开始遍历的,所以 左上节点 ( x 1 , y 1 ) (x1,y1) (x1,y1) 最开始就确定了。
所以我们每次只需要更新 右下节点 ( x 2 , y 2 ) (x2,y2) (x2,y2) 即可。
时间复杂度: O ( m n ) O(mn) O(mn)
C++代码;
const int dx[4] = {1,0,-1,0};
const int dy[4] = {0,1,0,-1};
class Solution {
public:
vector<vector<int>> findFarmland(vector<vector<int>>& g) {
int m = g.size() , n = g[0].size();
bool st[m][n];
memset(st,false,sizeof st);
function<void(int,int,int&,int&)> dfs = [&](int i,int j,int& x2,int& y2) ->void{
if(i < 0 || i >= m || j < 0 || j >= n || g[i][j] == 0 || st[i][j]) return;
st[i][j] = true;
if(i > x2 || j > y2){
x2 = i, y2 = j;
}
for(int k = 0;k < 4;k++){
dfs(i + dx[k] , j + dy[k],x2,y2);
}
};
vector<vector<int>> ans;
for(int i = 0;i < m;i++){
for(int j = 0;j < n;j++){
if(g[i][j] && !st[i][j]){
int x1 = i , y1 = j , x2 = i, y2 = j;
dfs(i,j,x2,y2);
ans.push_back({x1,y1,x2,y2});
}
}
}
return ans;
}
};