MySQL(三)SQL优化

news2025/1/11 20:47:41

SQL优化

  • 插入数据
    • 大批量数据插入
  • 主键优化
  • order by优化
  • group by优化
  • limit优化
  • count优化
  • update优化

插入数据

需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化

insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');
.....

优化方案一:批量插入数据500-1000条

Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

优化方案二:手动控制事务(默认一条insert语句,自动提交数据)

start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

优化方案三:主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

大批量数据插入

如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,可以使用MySQL数据库提供的load指令进行插入。操作如下:

将数据脚本文件中的数据加载到表结构中:

-- 客户端连接服务端时,加上参数 -–local-infile需要加载本地文件
mysql –-local-infile -u root -p

在这里插入图片描述

-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

在这里插入图片描述

-- 执行load指令将准备好的数据,加载到表结构中每个数据用,分割,每一行数据用/n分割
load data local infile '/root/load_user_100w_sort.sql' into table tb_user fields terminated by ',' lines terminated by '\n' ;

在这里插入图片描述
在这里插入图片描述
在load时,主键顺序插入性能高于乱序插入

主键优化

数据组织方式:在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

行数据,都是存储在聚集索引的叶子节点上的。在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。

主键顺序插入效果

从磁盘中申请页, 主键顺序插入, 第一个页没有满,继续往第一页插入,当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接,当第二页写满了,再往第三页写入。
在这里插入图片描述
主键乱序插入效果

加入1#,2#页都已经写满了,存放了如图所示的数据,此时再插入id为50的记录,因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。
在这里插入图片描述
但是47所在的1#页,已经写满了,存储不了50对应的数据了。 那么此时会开辟一个新的页 3#。将1#页后一半的数据,移动到3#页,然后在3#页,插入50。此时这三个页之间的数据顺序是有问题的
在这里插入图片描述
重新设置链表指针:1#的下一个页是3#, 3#的下一个页是2#。
在这里插入图片描述
上述的这种现象,称之为 “页分裂”,是比较耗费性能的操作。

删除记录:

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。在这里插入图片描述
当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前
或后)看看是否可以将两个页合并以优化空间使用。
在这里插入图片描述
删除数据,并将页合并之后,再次插入新的数据21,则直接插入3#页
在这里插入图片描述
这个里面所发生的合并页的这个现象,就称之为 “页合并”。

MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。

主键设计原则

  • 满足业务需求的情况下,尽量降低主键的长度。(二级索引占用空间大)
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。
  • 业务操作时,避免对主键的修改。

order by优化

MySQL的排序,有两种方式:

  • Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。
  • Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。

Using index的性能高,而Using filesort的性能低,在优化排序操作时,尽量要优化为 Using index。

执行age,phone排序SQL:

explain select id,age,phone from tb_user order by age,phone; 
#都没有索引

在这里插入图片描述
创建age,phone索引

create index idx_user_age_phone_aa on tb_user(age,phone);

执行一下排序查询:
单独对age升序排:

explain select id,age,phone from tb_user order by age;
# 使用了索引

在这里插入图片描述
对age,phone 升序排:

explain select id,age,phone from tb_user order by age, phone ;
# 使用了索引

在这里插入图片描述
根据age, phone进行升序排序,就由原来的Using filesort, 变为了 Using index,性能就是比较高的了。

根据age, phone进行降序排序:

explain select id,age,phone from tb_user order by age desc , phone desc ;
# 使用了索引并反向扫描

在这里插入图片描述
也出现了 Using index, 但是Extra中出现了 Backward index scan,这个代表反向扫描索引,因为在MySQL中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan。 在MySQL8版本中,支持降序索引,也可以创建降序索引。

对phone,age 升序排:

explain select id,age,phone from tb_user order by phone , age;
# 在索引之外,需要额外进行外部的排序动作

在这里插入图片描述
根据phone,age进行升序排序,phone在前,age在后,违背了最左匹配法则,索引失效

根据age升序排, phone降序排:

explain select id,age,phone from tb_user order by age asc,phone desc;
# 在索引之外,需要额外进行外部的排序动作

在这里插入图片描述
因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时就会出现Using filesort。

创建联合索引(age 升序排序,phone 倒序排序)

create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

在这里插入图片描述
再次执行如下SQL

explain select id,age,phone from tb_user order by age asc , phone desc ;
# 使用了索引

在这里插入图片描述

  • 如果根据age和phone创建了联合索引,默认都是升序,当age和phone升序排序,age单字段升序,age和phone降序排序都会走联合索引。其他情况会索引失效。
  • 一个升序,一个降序的情况,需要重新建立索引。

在这里插入图片描述

order by优化原则:

  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。
  • 尽量使用覆盖索引,不用再回表查询,避免索引排序失效。
  • 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。
  • 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k),超过磁盘缓冲区大小,会在磁盘排序,性能低。

在这里插入图片描述

group by优化

将 tb_user 表的索引全部删除掉,在没有索引的情况下,执行如下SQL,查询执行计划:

explain select profession , count(*) from tb_user group by profession ;
 #用到了缓冲区,效率较低

在这里插入图片描述
针对于 profession , age, status 创建一个联合索引

create index idx_user_pro_age_sta on tb_user(profession , age , status);

再执行前面相同的SQL查看执行计划

explain select profession , count(*) from tb_user group by profession ;
# 使用了索引

在这里插入图片描述
根据age分组:

explain select profession , count(*) from tb_user group by age ;
#不满足最左前缀法则

在这里插入图片描述
根据profession,age分组:

explain select profession , age,count(*) from tb_user group by profession,age ;
# 使用了索引

在这里插入图片描述
条件中有profession满足最左前缀法则

explain select age,count(*) from tb_user where profession = "软件工程"group by profession,age ;

在这里插入图片描述

通过以下两点进行优化,以提升性能:

  • 在分组操作时,可以通过索引来提高效率。
  • 分组操作时,索引的使用也是满足最左前缀法则的。

limit优化

在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。
在这里插入图片描述
当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。

一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb_sku t , (select id from tb_sku order by id limit 2000000,10) a where t.id = a.id;

在这里插入图片描述

count优化

select count(*) from tb_user ;
  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
  • InnoDB 引擎执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。

如果要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦)。

count的用法:
count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是NULL,累计值就加 1,否则不加,最后返回累计值。

  • count(主键)InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)。
  • count(字段)
    • 没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,判断是否为null,不为null,计数累加。
    • 有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
  • count(数字)InnoDB引擎遍历整张表,但不取值,服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加
  • count(*)InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(*)

update优化

update course set name = 'javaEE' where id = 1 ;

在执行更新的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放

update course set name = 'SpringBoot' where name = 'PHP' ; 

当开启多个事务,在执行上述的SQL时,会发现行锁升级为了表锁。 导致该update语句的性能大大降低。

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,更新的条件必须有索引,并且该索引不能失效,否则会从行锁升级为表锁 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/400847.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Salesforce 2023财年逆风增长,现金流达历史最高!

在过去的一年里&#xff0c;Salesforce一直是华尔街最关注的公司之一。3月1日&#xff0c;CRM领域的全球领导者Salesforce公布了截至2023年1月31日的第四季度和整个财年的业绩。 Salesforce主席兼首席执行官Marc Benioff表示&#xff1a; Salesforce全年实现了314亿美元的收入…

【备战面试】每日10道面试题打卡-Day6

本篇总结的是计算机网络知识相关的面试题&#xff0c;后续也会更新其他相关内容 文章目录1、HTTP 与 HTTPS 有哪些区别&#xff1f;2、HTTPS的加密过程是什么&#xff1f;3、GET与POST有什么区别&#xff1f;4、讲讲HTTP各个版本的区别&#xff1f;5、HTTP与FTP的区别&#xff…

【C++、C++11】可变参数模板、lambda表达式、包装器

文章目录&#x1f4d6; 前言1. 可变参数模板1.1 万能模板&#xff1a;1.2 完美转发&#xff1a;1.3 可变参数模板的使用&#xff1a;1.4 emplace_back&#xff1a;2. lambda表达式2.1 lambda表达式的定义&#xff1a;2.2 lambda表达式的用法&#xff1a;2.2 - 1 捕捉列表的用法…

manacher算法详解

例题 求一个字符串的最长回文子串的长度 O(N2)O(N^2)O(N2)的解法很容易想&#xff0c;就是从每个字符位置向左右同时拓展&#xff0c;然后检查当前是不是回文&#xff0c;更新长度&#xff0c;可以简单写一下代码 int solve(string &ss){int ans 0;int n ss.length();s…

从参数数量视角理解深度学习神经网络算法 DNN, CNN, RNN, LSTM 以python为工具

从参数数量视角理解深度学习神经网络算法 DNN, CNN, RNN, LSTM 以python为工具 文章目录1. 神经网络数据预处理1.1 常规预测情景1.2 文本预测场景2.全连接神经网络 DNN3.卷积神经网络CNN4.循环神经网络 RNN5.长短期记忆神经网络 LSTMʚʕ̯•͡˔•̯᷅ʔɞʚʕ̯•͡˔•̯᷅ʔ…

【数据结构】详解空间复杂度

Yan英杰的博客 悟已往之不谏 知来者之可追 目录 空间复杂度 ​案例1:计算BubbleSort的空间复杂度&#xff1f; 案例2:计算斐波那契额数列的前N项的空间复杂度 案例3:计算阶乘递归Fac的空间复杂度&#xff1f; 案例4:F1和F2两函数是否使用的同一块空间 案例5:计算该…

git团队合作 - branch分支的使用、主分支合并、冲突处理方案

情景例子开发部3人&#xff0c;组长man&#xff0c; 组员devA&#xff0c;devB&#xff1b;1&#xff09;组长man负责代码合并、冲突处理、检查代码、合并代码到master主分支&#xff1b;2&#xff09;组员devA负责开发3&#xff09;组员devB负责开发git仓库主次分支安排1&…

windows下qt creator 配置编译环境gcc,g++,gdb,cmake

MSVC&#xff1a;即Microsoft Visual C Compiler&#xff0c;即微软自己的编译器 MinGW&#xff1a;我们都知道GNU在Linux下面鼎鼎大名的gcc/g&#xff0c;MinGW则是指Minimalist GNU for Windows的缩写 这里我们选择MinGW&#xff0c;至于Qt中&#xff0c;这两种模式的区别&…

Python入门自学进阶-Web框架——34、富文本编辑器KindEditor、爬虫初步

KindEditor是一个轻量级的富文本编辑器&#xff0c;应用于浏览器客户端。一、首先是下载&#xff1a;http://kindeditor.net/down.php&#xff0c;如下图下载后是解压缩后&#xff1a;红框选中的都可以删除到&#xff0c;这些主要是针对不同的语言编写的示例&#xff0c;因为我…

一文教会你如何简单使用Fegin进行远程服务调用

文章目录1、fegin的基本介绍2、fegin的基本使用步骤3、项目中的实际运用4、测试前言在分布式微服务中&#xff0c;少不了会进行不同服务之间的相互调用&#xff0c;比如A服务要调用B服务中的接口&#xff0c;如何简单方便的实现呢&#xff1f;fegin可以来帮助。 1、fegin的基本…

如何禁止删除或修改RAR压缩包里的文件?很多人不知道这个功能

你是否有过这样的需求&#xff1f;把文件压缩成RAR格式后&#xff0c;需要对压缩包里的文件进行保护&#xff0c;以防别人或者自己误删文件&#xff0c;或者不小心修改了文件内容。 有些小伙伴可能会给压缩包里的文件都设置上“限制编辑”&#xff0c;这虽然也能防止随意更改内…

Stable Diffusion 个人推荐的各种模型及设置参数、扩展应用等合集(不断更新中)

一、说明 | 表示或者 表示 以上 二、模型 适用风景、房子、车子等漫画类风格 模型的VAE不要用模型附带的&#xff0c;好像就是naifu的官方vae&#xff0c;很老了&#xff0c;用 vae-ft-mse-840000-ema-pruned.ckpt 或者是 kl-f8-anime2.ckpt&#xff1b; 嵌入模型要下载作者…

免费集装箱箱号识别API,人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户,支持API集成二次开发人工智能企业

免费集装箱箱号识别API&#xff0c;人工智能企业CIMCAI集装箱识别检测人工智能平台全球4千企业用户&#xff0c;支持API集成二次开发。箱信息识别及铅封号识别功能免费&#xff0c;顶尖AI集装箱识别率99.98%&#xff0c;全球No.1集装箱人工智能企业CIMCAI打造。中国上海人工智能…

chrome如何查看和修改除了密码,付款方式,地址意外的自动填充表单内容

这种自动填写的内容似乎无法设置。 软件地址&#xff1a;https://sqlitebrowser.org/dl/ 去这里查看地址 https://chromium.googlesource.com/chromium/src//master/docs/user_data_dir.md 比如我是windows&#xff0c;则地址为&#xff1a;C:\Users\用户名\AppData\Local\Go…

【Java】SpringBoot中实现异步编程

前言 首先我们来看看在Spring中为什么要使用异步编程&#xff0c;它能解决什么问题&#xff1f; 什么是异步&#xff1f; 首先我们先来看看一个同步的用户注册例子&#xff0c;流程如下&#xff1a; 异步的方式如下&#xff1a; 在用户注册后将成功结果返回&#xff0c;…

java:UUID和雪花生成算法

目录 UUID生成不重复命名方法 在实际项目中的运用 UUID算法的缺点 什么是雪花算法&#xff1f; UUID生成不重复命名方法 我们在做项目的时候可能需要用到全局唯一ID的场景&#xff0c;这种时候为了防止ID冲突可以使用36位的UUID UUID可以自动生成唯一的id。是java.util中自…

面朝大海,春暖花开丨2023年Kaadas凯迪仕全国经销商大会成功召开

3月8日&#xff0c;We——2023年Kaadas凯迪仕全国经销商大会将在中国青岛星光岛会议中心隆重举行&#xff0c;盛会汇聚了超过1000名优秀合作伙伴&#xff0c;规模空前。Kaadas凯迪仕品牌创始人&集团总裁苏志勇先生、集团董事长苏祺云先生以及各高层领导均莅临现场。 大会伊…

万字长文:Stable Diffusion 保姆级教程

万字长文&#xff1a;Stable Diffusion 保姆级教程 2022年绝对是人工智能爆发的元年&#xff0c;前有 stability.ai 开源 Stable Diffusion 模型&#xff0c;后有 Open AI 发布 ChatGPT&#xff0c;二者都是里程碑式的节点事件&#xff0c;其重要性不亚于当年苹果发布iPhone&a…

蓝库云|告诉你传统产业该如何进行数字化转型

在后疫情时代下&#xff0c;企业该如何在面临生存危机的情形下&#xff0c;投入「数字化转型」、提升公司竞争力&#xff0c;已成为许多公司的当务之急&#xff0c;但到底什么是数字化转型呢&#xff1f;传统产业又如何着手进行数位转型&#xff1f; 数字化转型是什么&#xf…

Uipath Excel 自动化系列13-ForEachExcelSheet(遍历Sheet)

活动描述 ForEachExcelSheet(遍历Sheet)&#xff1a;遍历Excel中的工作表&#xff0c;可以对 Excel 工作簿中的每个工作表重复一个或多个活动,该活动需与Use Excel File 活动选择的 Excel 文件一起使用。 使用场景&#xff1a;当处理包含多张工作表的 Excel 文件&#xff0c;…