每日学术速递3.6

news2025/1/11 9:12:17

Subjects: cs.CV

1.Multi-Source Soft Pseudo-Label Learning with Domain Similarity-based Weighting for Semantic Segmentation

标题:用于语义分割的基于域相似性加权的多源软伪标签学习

作者:Shigemichi Matsuzaki, Hiroaki Masuzawa, Jun Miura

文章链接:https://arxiv.org/abs/2303.00979v1

项目代码:https://github.com/shigemichimatsuzaki/ms2pl

摘要:

        本文描述了一种使用与目标数据集不一定相关的多个源数据集进行语义分割的域自适应训练方法。我们通过整合来自多个源模型的预测对象概率,提出了一种软伪标签生成方法。每个源模型的预测基于源数据集和目标数据集之间的估计域相似性进行加权,以强调在与目标更相似的源上训练的模型的贡献,并生成合理的伪标签。我们还提出了一种使用软伪标签的训练方法,考虑到它们的熵,以充分利用来自源数据集的信息,同时抑制可能被错误分类的像素的影响。实验表明,与我们之前的工作和另一种现有的多源域自适应方法相比,具有相当或更好的性能,并且适用于各种目标环境。

2.ESceme: Vision-and-Language Navigation with Episodic Scene Memory

标题:ESceme:具有情景场景记忆的视觉和语言导航

作者:Qi Zheng, Daqing Liu, Chaoyue Wang, Jing Zhang, Dadong Wang, DaCheng Tao

文章链接:https://arxiv.org/abs/2303.01032v1

项目代码:https://github.com/qizhust/esceme

摘要:

        视觉和语言导航 (VLN) 模拟在真实场景中遵循自然语言导航指令的视觉代理。现有方法在新环境中的导航方面取得了巨大进步,例如波束搜索、预探索以及动态或分层历史编码。为了平衡泛化和效率,我们在导航时求助于记住除了正在进行的路线之外的访问场景。在这项工作中,我们为 VLN 引入了情景场景记忆 (ESceme) 机制,该机制可以在代理进入当前场景时唤醒其对过去访问的记忆。情景场景记忆允许代理设想下一个预测的更大画面。通过这种方式,智能体学会充分利用当前可用的信息,而不是仅仅适应所见的环境。我们通过在训练期间增强候选节点的观察特征来提供简单而有效的实现。我们验证了 ESceme 在三个 VLN 任务上的优势,包括短视距导航(R2R)、长视距导航(R4R)和视觉对话导航(CVDN),并实现了新的最先进的技术水平.

3.FeatAug-DETR: Enriching One-to-Many Matching for DETRs with Feature Augmentation

标题:FeatAug-DETR:通过特征增强来丰富 DETR 的一对多匹配

作者:Rongyao Fang, Peng Gao, Aojun Zhou, Yingjie Cai, Si Liu, Jifeng Dai, Hongsheng Li ·

文章链接:https://arxiv.org/abs/2303.00477v1

项目代码:https://github.com/rongyaofang/feataug-detr

摘要:

        一对一匹配是类 DETR 对象检测框架中的关键设计。它使 DETR 能够执行端到端检测。但是,它也面临着缺乏正样本监督和收敛速度慢的挑战。最近的几项工作提出了一对多匹配机制来加速训练和提高检测性能。我们重新审视这些方法,并以增强对象查询的统一格式对它们进行建模。在本文中,我们提出了两种方法,从增强图像或图像特征的不同角度实现一对多匹配。第一种方法是通过数据增强进行一对多匹配(表示为 DataAug-DETR)。它对图像进行空间变换,并在同一训练批次中包含每个图像的多个增强版本。这种简单的增强策略已经实现了一对多匹配,并且令人惊讶地提高了 DETR 的性能。第二种方法是通过特征增强进行一对多匹配(表示为 FeatAug-DETR)。与DataAug-DETR不同的是,它增强了图像特征而不是原始图像,并且在同一批次中包含多个增强特征以实现一对多匹配。 FeatAug-DETR 显着加速 DETR 训练并提升检测性能,同时保持推理速度不变。我们进行了广泛的实验来评估所提出的方法对 DETR 变体的有效性,包括 DAB-DETR、Deformable-DETR 和 H-Deformable-DETR。在没有额外训练数据的情况下,FeatAug-DETR 将 Deformable-DETR 的训练收敛周期缩短至 24 个 epoch,并在以 Swin-L 为骨干的 COCO val2017 集上实现了 58.3 AP。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/391325.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2022掉队的“蔚小理”,按下了兔年加速键

配图来自Canva可画 进入2023年,各大车企又展开了新一轮的“竞速”。尽管1月份汽车整体销量出现了“阴跌”,但从各路车企发布的销量目标来看,车企对于2023依旧保持着较高的信心和预期。在一众车企中,以“蔚小理”为代表的新势力们…

基于quartz实现定时任务管理系统

基于quartz实现定时任务管理系统 背景 说起定时任务框架,首先想到的是Quartz。这是定时任务的老牌框架了,它的优缺点都很明显。借助PowerJob 的readme文档的内容简单带过一下这部分。 除了上面提到,还有elastic-job-lite、quartzui也是相当…

【C++】仿函数 -- priority_queue

文章目录一、priority_queue 的介绍和使用1、priority_queue 的介绍2、priority_queue 的使用3、priority_queue 相关 OJ 题二、仿函数1、什么是仿函数2、仿函数的作用三、priority_queue 的模拟实现一、priority_queue 的介绍和使用 1、priority_queue 的介绍 priority_queu…

vue3 transition动画

Vue 提供了 transition 的封装组件,通过它可以给任何元素和组件添加进入/离开过渡动画 一、vue怎么实现单组件/元素的过渡动画 Vue 在插入、更新或者移除 DOM 时,提供多种不同方式的应用过渡效果。------vue官网 vue的transition组件通过观察元素的DOM状…

全网最全整理,自动化测试10种场景处理(超详细)解决方案都在这......

目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 自动化工作流程 自动…

三种让DIV标签中的P标签水平和垂直都居中方法

效果如下图 红色1块是span,属于行内元素。 绿色2块和蓝色4块是p,属于块级元素。 黄色3块h3,属于块 都是块级元素方法是可以通用的 这里两个类别元素一起来展示主要是为了区别 1行内块元素水平居中垂直居中 行内元素和行内块元素水平居中…

docker项目自动化部署脚本(认真排版、工作积累)

要解决什么问题? 把日益复杂化、工程化的开发环境,以及生产环境,变得简单,自动化部署。 达到什么效果? 环境处处一致,并且自动化部署,提升生产力,又快又好。 当您更换电脑、更换…

Vue2.0开发之——购物车案例-Goods组件封装-修改商品的勾选状态(49)

一 概述 如何修改商品的勾选状态自定义state-change事件修改对应商品的勾选状态 二 如何修改商品的勾选状态 2.1 App.vue中data每个Item中goods_state的变化伴随商品勾选状态变化 2.2 Goods.vue中复选框的值是props属性 <inputtype"checkbox"class"custom…

LeeCode:回文子串个数(动态规划)

文章目录一、题目二、算法思路三、代码实现四、复杂度分析一、题目 给你一个字符串 s &#xff0c;请你统计并返回这个字符串中 回文子串 的数目。具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的字符组成&#xff0c;也会被视作不同的子串。 回文字符串 是正着读…

二值图像骨架线提取

二值图像骨架线提取HilditchThin算法Rosenfeld算法OpenCV_Contrib中的算法示例其他细化算法查表法HilditchThin的另一种算法参考二值图像骨架线提取算法&#xff1a;HilditchThin算法、Rosenfeld算法、OpenCV_Contrib中的算法 HilditchThin算法 1、使用的8邻域标记为&#xff…

Java+ElasticSearch+Pytorch实现以图搜图

以图搜图&#xff0c;涉及两大功能&#xff1a;1、提取图像特征向量。2、相似向量检索。第一个功能我通过编写pytorch模型并在java端借助djl调用实现&#xff0c;第二个功能通过elasticsearch7.6.2的dense_vector、cosineSimilarity实现。一、准备模型创建demo.py&#xff0c;输…

cuda2D FDTD——share

https://www.coder.work/article/30133 shared memory只能在block内共享&#xff0c;之间无法互相通信 对于2D TM波动方程计算&#xff0c;我们可以使用以下策略来处理共享内存的边界&#xff1a; 将全局内存中的数据复制到共享内存中时&#xff0c;除了将每个线程需要的数据…

Python爬虫实践:优志愿 院校列表

https://www.youzy.cn/tzy/search/colleges/collegeList获取目标网址等信息打开开发人员工具&#xff08;F12&#xff09;&#xff0c;拿到调用接口的地址&#xff0c;以及接口请求参数等信息&#xff0c;如下curl https://uwf7de983aad7a717eb.youzy.cn/youzy.dms.basiclib.ap…

假如你知道这样的MySQL性能优化

1. 为查询缓存优化你的查询 大多数的 MySQL 服务器都开启了查询缓存。这是提高性最有效的方法之 一&#xff0c;而且这是被 MySQL 的数据库引擎处理的。当有很多相同的查询被执行了多次的时候&#xff0c;这些查询结果会被放到一个缓存中&#xff0c;这样&#xff0c;后续的相同…

Kogito -- 入门详解

Kogito -- 入门详解1. Introduction1.1 Version1.2 Introduction2.Environment Install2.1 JDK Install2.2 Maven Install&#xff08;3.8.6&#xff09;2.3 Idea2.4 VSCode3. Run Code3.1 Dependency3.2 Run3.3 Swagger4.Awakening4.1 Big Data -- Postgres5.Awakening5.1 Big…

如何做一个高级的文本编辑器 textarea,拥有快捷键操作

如何做一个高级的文本编辑器 textarea&#xff0c;拥有快捷键操作 最近想做一个高级点的 textarea &#xff0c;支持 JetBrains 系列软件的快捷键&#xff0c;比如&#xff1a; CTRL D 复制当前行。Tab 在前面插入 4 个空格。Shift Tab 删除行前的空格&#xff0c;多于4个&a…

google独立站和与企业官网的区别是什么?

google独立站和与企业官网的区别是什么&#xff1f; 答案是&#xff1a;独立站通过谷歌SEO优化可以更好的获取自然排名的流量。 随着互联网的不断发展&#xff0c;企业越来越重视自身网站的建设和优化&#xff0c;而在企业网站建设中&#xff0c;很多人会犯一个常见的错误&am…

模块、包和异常

目录1.模块import 导入from...import 导入2. 模块的搜索顺序3. __name__属性的使用4. 包包的使用步骤5. 发布模块6. 安装模块7. 卸载模块8. pip 安装第三方模块9. 异常处理异常捕获异常的传递抛出 raise 异常1.模块 模块是 Python 程序架构的一个核心概念 每一个以扩展名 py …

LPDDR4x 的 学习总结(4) - SDRAM chip的组织结构

上节总结cell的结构和基本操作 本节基于cell组合起来的DRAM组织结构 DDR Device 的组织结构 Cells 以特定的方式组成 Column/Row/Bank/Chip/Rank/DIMM/Channel等多层级组织结构如下图&#xff1a; 图1 - DRAM的组织结构 图2 - DRAM容量的组织结构图 Channel: 同1个DDR控制器 …

GIT基础常用命令-1 GIT基础篇

git基础常用命令-1 GIT基础篇1.git简介及配置1.1 git简介1.2 git配置config1.2.1 查看配置git config1.2.2 配置设置1.2.3 获取帮助git help2 GIT基础常用命令2.1 获取镜像仓库2.1.1 git init2.1.2 git clone2.2 本地仓库常用命令2.2.1 git status2.2.2 git add2.2.3 git diff2…