49.在ROS中实现local planner(2)- 实现Purepersuit(纯跟踪)算法

news2024/11/17 7:21:39

48.在ROS中实现local planner(1)- 实现一个可以用的模板实现了一个模板,接下来我们将实现一个简单的纯跟踪控制,也就是沿着固定的路径运动,全局规划已经规划出路径点,基于该路径输出相应的控制速度

1. Pure Pursuit

Pure Pursuit路径跟随便是基于受约束移动机器人圆周运动的特性所开发出来的运动控制方式。原理十分简单,如图所示,移动机器人有一个前视的搜索半径,与机器人规划的路径有一个焦点,假设机器人从当前位置到路径焦点的运动为圆周运动。其中的前视距离便是图1中的L。根据几何关系便可以计算机器人的运动半径。
在这里插入图片描述

受约束的机器人模型(不能横向运动)可由两个控制量组成,即运动参考点的线速度v与角速度w。在极短的运行周期中,机器人都是以固定的线速度与角速度运动。因此机器人的运动可以视为圆周运动(w=0时为直线运动)。

2. 运动半径推算

如图所示的机器人便是绕着一个旋转中心进行圆周运动,于是移动机器人的运动控制可视为求解其在运动过程中的实时旋转半径。图中,r为移动机器人的旋转半径。

我们以base坐标系为例,及当前机器人为坐标原点,x轴为前方,y轴为左方,即ROS的坐标系,(x,y)为目标点, L为距离目标点的距离(前视距离),如下计算,容易求得旋转半径r

由图可得 d = r − y d = {r - y} d=ry
d 2 + x 2 = r 2 d^2+x^2 = r^2 d2+x2=r2
即: r 2 − 2 r y + y 2 + x 2 = r 2 r^2-2ry+y^2+x^2 = r^2 r22ry+y2+x2=r2
即: x 2 + y 2 = 2 r y x^2+y^2 = 2ry x2+y2=2ry
即: L 2 = 2 r y L^2 = 2ry L2=2ry
即: r = L 2 / 2 y r = L^2/2y r=L2/2y

运动半径=前视距离的平方/两倍的y

我们知道r=v/w 即我们只需要给定v/w为固定的值即可

因v与L相关 我们取一次关系
v=aL a为长数项
可得w=v/r=a*2y/L

3. 坐标转换

我们知道setPlan下发的坐标一般使用的是map坐标系,我们计算的时候需要转换为base坐标系

我们可以使用init接口提供的tf::TransformListener即可完成, (1.14.0版本后接口更新,使用新的接口)


geometry_msgs::PoseStamped PurepursuitPlanner::goalToBaseFrame(const geometry_msgs::PoseStamped& goal_pose_msg) {

#if ROS_VERSION_GE(ROS_VERSION_MAJOR, ROS_VERSION_MINOR, ROS_VERSION_PATCH, 1, 14, 0)

  geometry_msgs::PoseStamped goal_pose, base_pose_msg;

  goal_pose = goal_pose_msg;

  goal_pose.header.stamp = ros::Time(0.0);

  try {

    base_pose_msg = tf_->transform(goal_pose, "base_link");

  } catch (tf2::TransformException& ex) {

    ROS_WARN("transform err");

    return base_pose_msg;

  }

#else

  geometry_msgs::PoseStamped base_pose_msg;

  tf::Stamped<tf::Pose> goal_pose, base_pose;

  poseStampedMsgToTF(goal_pose_msg, goal_pose);

  goal_pose.stamp_ = ros::Time();

  try {

    tf_->transformPose(costmap_ros_->getBaseFrameID(), goal_pose, base_pose);

  } catch (tf::TransformException& ex) {

    ROS_WARN("transform err");

    return base_pose_msg;

  }

  tf::poseStampedTFToMsg(base_pose, base_pose_msg);

#endif

  return base_pose_msg;

}

4. 前视距离

我们不断根据当前位置,更新前视距离,通过前面的接算,给定速度

4.1 前视距离大小设置

前世距离可以根据V我们预设速度相关

  • 如果前世距离较大,相当于路径采样间隔较大,跟踪路径与规划路径的偏差会大。

  • 如果前世距离较小,机器人容易抖动

4.2 前视距离更新策略

如果当前距离路径中前视距离的点后的n个点的距离小于前世距离,则更新前视距离
即如果当前前视距离的点在路径索引为n,则判断n+m索引距离当前点位置是否小于预设前视距离值

5. 速度限制

一般机器人小车,线速度是>0的即,只能前进,无法后退。这就需要我们新增当前前视点角度判断, 如果角度超过90,即在车的后方。可以对速度修正强制旋转

  auto target_yaw_diff = atan2(goal.pose.position.y, goal.pose.position.x);  // 当前目标点相对机器人的角度
  
.... // 计算半径 速度

    // 当前目标点相对机器人的角度 相差较大(即目标点在机器人后面), 需要直发角速度(即原地旋转), 转向目标点
    if (target_yaw_diff > PI*0.5) {
      cmd_vel.linear.x = 0;
      cmd_vel.angular.z = 0.8;
    } else if (target_yaw_diff < -PI*0.5) {
      cmd_vel.linear.x = 0;
      cmd_vel.angular.z = -0.8;
    }

6. 完成判断

我们在前视点到达规划路径的最后一个时,且当前点与该最后一点距离差小于预设的容忍差,强制输出0速度

  if (got && l < GOAL_TOERANCE_XY) {
    goal_reached_ = true;
    cmd_vel.angular.z = 0;
    cmd_vel.linear.x = 0;
  }

7. 测试

  • 修改move_base配置文件move_base_params.yaml
# base_local_planner: "dwa_local_planner/DWAPlannerROS"
base_local_planner: pure_pursuit_local_planner/PurepursuitPlanner

dwa_local_planner/DWAPlannerROS—>pure_pursuit_local_planner/PurepursuitPlanner

  • 启动模拟器
pibot_simulator
  • 启动rviz
pibot_view

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/390577.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系列学习(三) - 进程和库文件

目录 引言&#xff1a; 学习&#xff1a; 基本命令补充&#xff1a; wc命令&#xff1a; more命令&#xff1a; less命令&#xff1a; cat ps命令&#xff1a; kill命令&#xff1a; bg命令&#xff1a; fg命令&#xff1a; 查看系统运行级别&#xff1a; 库文件&a…

unity UGUI系统梳理 - 常用可视化控件

作为一名合格的UI仔>.<&#xff0c;我发现很多UI很久没有使用了&#xff0c;所以我决定做一个UGUI系列博客重新梳理一下 1、Image 在没有放入图片下&#xff0c;image控件长这样 注意 我一般没交互需求的情况下都会把RaycastTarget给点掉&#xff0c;这个不单单是从提…

CAPL脚本DBLookup函数动态访问CAN 报文的属性

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

学习周报3.5

文章目录前言文献阅读摘要介绍方法总结相关性总结前言 本周阅读文献《Multi-step ahead probabilistic forecasting of multiple hydrological》&#xff0c;文献主要提出一种基于三维卷积神经网络、卷积最小门记忆神经网络和变分贝叶斯神经网络的混合深度学习模型&#xff08…

【博学谷学习记录】超强总结,用心分享|狂野大数据课程【Spark SQL函数定义】的总结分析

5.1 如何使用窗口函数 回顾: 窗口函数格式:分析函数 over(partition by xxx order by xxx [asc|desc] [rows between xxx and xxx])学习的相关分析函数有那些? 第一类: row_number() rank() dense_rank() ntile()第二类: 和聚合函数组合使用 sum() avg() max() min() count…

西电软件体系结构核心考点汇总(期末真题+核心考点)

文章目录前言一、历年真题二、核心考点汇总2.1 什么是软件体系架构?(软件体系结构的定义)2.2 架构风格优缺点2.3 质量属性2.4 质量评估前言 主要针对西安电子科技大学《软件体系结构》的核心考点进行汇总。 【期末期间总结资料如下】 针对西电计科院软件工程专业大三《软件体…

【QT】使用QML构建一个简易的计算器界面(三)

前面两篇对计算器界面的布局和显示以及实现功能做了相关优化&#xff0c;但是对输入显示那一块还没有具体的处理步骤&#xff0c;包括对输入表达式的合法性检查&#xff0c;显示框的多行历史显示等功能还需要添加&#xff0c;接下来将从这几个方面对这些功能进行添加。 1、对输…

概率论 1.3 古典概型与几何概型

1.3.1 排列与组合排列从n个不同元素任取r(r<n)个元素排成一列(考虑元素出现的先后次序)&#xff0c;称此为一个排列&#xff0c;此种排列的总数为n(n-1)....(n-r1)n!/(n-r)&#xff01;&#xff0c;若rn,则称为全排列&#xff0c;2.重复排列从n个不同元素中每次取出一个,放回…

GPIO输入和输出以及八种工作模式

一.GPIO的简介 GPIO &#xff08;general purpose input output&#xff09;是通用输入输出端口的简称&#xff0c;简单来说就是软件可控制的引脚&#xff0c;STM32芯片的GPIO引脚与外部传感器连接起来&#xff0c;从而实现与外部通讯、控制以及数据采集的功能。 1.引脚全是GP…

[2.1.1]进程管理——进程的概念、组成、特征

文章目录第二章 进程管理进程的概念、组成、特征&#xff08;一&#xff09;进程的概念&#xff08;二&#xff09;进程的组成——PCB&#xff08;三&#xff09;进程的组成——程序段、数据段补充&#xff1a;程序是如何运行的&#xff1f;&#xff08;四&#xff09;进程的特…

vue3 插槽使用详解

目录1 前言2 插槽的使用2.1 基本使用2.2 具名插槽2.3 动态插槽名2.4 插槽传值3 总结1 前言 Vue 实现了一套内容分发的 API&#xff0c;将 <slot> 元素作为承载分发内容的出口&#xff0c;使用插槽使得vue组件的设计更加灵活。 在vue版本更迭中&#xff0c;尽管插槽的使…

常用的设计模式之一(创建型模式)

设计模式可分为三大类&#xff1a; 创建型模式 (Creational Patterns)结构性模式 (Structural Patterns)行为型模式 (Behavioral Patterns) 模式描述包括创建型模式工厂模式&#xff08;Factory Pattern&#xff09; 抽象工厂模式&#xff08;Abstract Factory Pattern&#…

并发编程——可见性与有序性

如果有兴趣了解更多相关内容&#xff0c;欢迎来我的个人网站看看&#xff1a;耶瞳空间 JMM即Java Memory Model&#xff0c;它定义了主存、工作内存抽象概念&#xff0c;底层对应着CPU寄存器、缓存、硬件内存、CPU指令优化等。JMM体现在以下几个方面&#xff1a; 原子性&…

Web API

DOM API 1、选中页面元素 let elem document.querySelector(CSS选择器); console.log(elem); console.dir(elem); 2、事件 鼠标点击事件 onclick 鼠标移动事件 onmousemove 等等 事件源 .box&#xff0c;事件类型 onlick&#xff0c;事件处理方式 alert(hello) let d…

[Mybatis1]介绍与快速入门

文章目录 Mybatis概述 持久层 框架 Mybatis与JDBC对比 JDBC代码的缺陷 Mybatis简化JDBC Mybatis快速入门案例 整体案例项目结构 1.创建user表&#xff0c;添加数据 2.创建Maven项目&#xff0c;导入坐标 3.编写Mybatis核心配置文件 4.编写数据库返回对象的实体类 5. 编写S…

QML Button详解

1.Button简介 Button表示用户可以按下或单击的按钮控件。按钮通常用于执行一个动作&#xff0c;或回答一个问题。典型的按钮有确定、应用、取消、关闭、是、否和帮助。 Button继承自AbstractButton&#xff0c;提供了以下几种信号。 void canceled() //当按…

Python笔记 -- 列表

文章目录1、列表简介2、修改、添加、删除元素2.1、添加2.2、删除3、排序、倒序4、遍历列表5、创建数值列表6、列表切片7、列表复制8、元组1、列表简介 在Python中用方括号[]表示列表&#xff0c;用逗号隔开表示其元素 通过索引访问列表 names [aa,bb,cc,dd]print(names[0]) …

游戏项目中的程序化生成(PCG):算法之外的问题与问题

本篇讨论的是什么 从概念上讲&#xff0c;PCG&#xff08;程序化生成&#xff09;的含义很广&#xff1a;任何通过规则计算得到的内容&#xff0c;都可算作是PCG。但在很多游戏项目的资料&#xff0c;包括本篇&#xff0c;讨论PCG时特指是&#xff1a;用一些算法/工具(特别是H…

C语言-基础了解-13-C enum枚举

C enum枚举 一、C枚举 枚举是 C 语言中的一种基本数据类型&#xff0c;用于定义一组具有离散值的常量。&#xff0c;它可以让数据更简洁&#xff0c;更易读。 枚举类型通常用于为程序中的一组相关的常量取名字&#xff0c;以便于程序的可读性和维护性。 定义一个枚举类型&a…

3.2 LED闪烁流水灯蜂鸣器

LED闪烁1.1 电路连接示意图LED采用低电平点亮的方式&#xff0c;利用ST-Link的3.3V进行供电。1.2程序设计1.21知识储备GPIO配置步骤步骤&#xff1a;1. 第⼀步&#xff0c;使⽤RCC开启GPIO的时钟2. 第⼆步&#xff0c;使⽤GPIO_Init()函数初始化GPIO3. 第三步&#xff0c;使⽤输…