C语言自定义类型---进阶

news2025/1/9 5:03:41

之前的文章中有结构体初阶知识的讲解,对结构体不是很了解的小伙伴可以先去去看一下结构体初阶

结构体,枚举,联合

  • 结构体
    • 结构体类型的声明
      • 特殊的声明
    • 结构的自引用
    • 结构体变量的定义和初始化
    • 结构体内存对齐 <3 <3 <3(重点)
      • 那为什么存在内存对齐?
    • 结构体传参
    • 结构体实现位段(位段的填充&可移植性)
      • 什么是位段
      • 位段的内存分配
      • 位段的跨平台问题
  • 枚举
    • 枚举类型的定义
    • 枚举的优点
    • 枚举的使用
  • 联合(共用体)
    • 联合类型的定义
    • 联合的特点
      • 面试题:
    • 联合大小的计算

结构体

结构体类型的声明

struct tag
{
	member - list;
}variable - list;

例如描述一个学生:

struct Stu
{
	char name[20];//名字
	int age;//年龄
	char sex[5];//性别
	char id[20];//学号
}; //分号不

特殊的声明

在声明结构的时候,可以不完全的声明。
比如:

//匿名结构体类型
struct
{
	int a;
	char b;
	float c;
}x;
struct
{
	int a;
	char b;
	float c;
}a[20], * p;
//像这样的结构体类型只能用它后面定义的变量名来找到它
//这样的代码可以吗
p = &x;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。

p = &x;
编译器会把上面的两个声明当成完全不同的两个类型
所以是非法的

结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?
比如:

//代码1
struct Node
{
	int data;
	struct Node next;
};

可行否?
如果可以,那sizeof(struct Node)是多少?
答案是:不行的,这样就相当于无限套娃,结构体里存着结构体
所以正确的自引用方式因该为:

//代码2
struct Node
{
	int data;
	struct Node* next;
};
//next存放下一个结构体的地址
//它可用在 链表中

结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
	int x;
	int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = { x, y };
struct Stu //类型声明
{
	char name[15];//名字
	int age; //年龄
};
struct Stu s = { "zhangsan", 20 };//初始化
struct Node
{
	int data;
	struct Point p;
	struct Node* next;
}n1 = { 10, {4,5}, NULL }; //结构体嵌套初始化
struct Node n2 = { 20, {5, 6}, NULL };//结构体嵌套初始化

结构体内存对齐 ❤️ ❤️ ❤️(重点)

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐

首先看下面两个结构体,并计算它们的大小

//练习1
struct S1
{
	char c1;
	int i;
	char c2;
};

//练习2
struct S2
{
	char c1;
	char c2;
	int i;
};
int main()
{
	printf("%d\n", sizeof(struct S1));
	printf("%d\n", sizeof(struct S2));
	return 0;
}

你们的答案是6,6?
其实不然,看下面的结果图
在这里插入图片描述
这就是结构体的内存对齐
结构体的对齐规则:

  1. 第一个成员在与结构体变量偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。VS中默认的值为8
  3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

那我来画图理解一下它吧
在这里插入图片描述
大家可以尝试,是否可以将 struct S2 自己画图来理解一下。

那为什么存在内存对齐?

但是我们发现,这样的方式造成了很大程度上的空间浪费,那么为什么还要采用这样的办法呢?主要有以下两个原因:

  • 平台原因(移植原因):
    不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
  • 性能原因:
    数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总的来说,结构体的内存对齐是拿空间来换取时间的做法

结构体传参

struct S
{
	int data[1000];
	int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
	printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
	printf("%d\n", ps->num);
}
int main()
{
	print1(s); //传结构体
	print2(&s); //传地址
	return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:结构体传参的时候,要传结构体的地址。

结构体实现位段(位段的填充&可移植性)

什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字

比如:

struct A
{
	int _a : 2;
	int _b : 5;
	int _c : 10;
	int _d : 30;
};

A就是一个位段类型。
那位段A的大小是多少?
在这里插入图片描述
结果显示大小是8,那我们看看位段的内存分配
“ :”后面的数字代表这个变量在内存中占用多少个bit位,并且一个变量所占用的bit位数,不能超过这个变量本身的大小
例如:

char 类型的数据 “ :”后的数字最大为8
int 类型的数据 “ :”后的数字最大为32

位段的内存分配

  1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型
  2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
  3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S
{
	char a : 3;
	char b : 4;
	char c : 5;
	char d : 4;
};
struct S s = { 0 };
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

在这里插入图片描述

位段的跨平台问题

  1. int 位段被当成有符号数还是无符号数是不确定的。
  2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
  3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
  4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在

枚举

枚举顾名思义就是一一列举。
把可能的取值一一列举。
比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。
性别有:男、女、保密,也可以一一列举。
月份有12个月,也可以一一列举

这里就可以使用枚举了。

枚举类型的定义

enum Day//星期
{
	Mon,
	Tues,
	Wed,
	Thur,
	Fri,
	Sat,
	Sun
};
enum Sex//性别
{
	MALE,
	FEMALE,
	SECRET
};
enum Color//颜色
{
	RED,
	GREEN,
	BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{}中的内容是枚举类型的可能取值,也叫 枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值
例如:

enum Color//颜色
{
	RED = 1,
	GREEN = 2,
	BLUE = 4
};

枚举的优点

为什么使用枚举?

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:

  1. 增加代码的可读性和可维护性
  2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
  3. 防止了命名污染(封装)
  4. 便于调试
  5. 使用方便,一次可以定义多个常量

枚举的使用

enum Day//星期
{
	Mon = 1,
	Tues,
	Wed,
	Thur,
	Fri,
	Sat,
	Sun
};
int main()
{
	printf("%d\n", Mon);
	printf("%d\n", Tues);
	printf("%d\n", Wed);
	printf("%d\n", Thur);
	printf("%d\n", Fri);
	printf("%d\n", Sat);
	printf("%d\n", Sun);

	return 0;
}

在这里插入图片描述

enum Color//颜色
{
	RED = 1,
	GREEN = 2,
	BLUE = 4
};
int main()
{
	enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。
	clr = 5; //ok??,我们平时尽量不要这样写
	printf("%d", clr);
	return 0;
}

在这里插入图片描述
图中看似是可以的,这是因为这个代码是在C语言中写的,如果换成c++的话这里会语法报错
如下:
在这里插入图片描述
在这里插入图片描述

当我们把 .c 的后缀改成 .cpp 时他就会进行语法报错了

联合(共用体)

联合类型的定义

联合也是一种特殊的自定义类型
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
比如:

//联合类型的声明
union Un
{
	char c;
	int i;
};
//联合变量的定义
union Un un;
int main()
{
	//计算连个变量的大小
	printf("%d\n", sizeof(un));
	return 0;
}

在这里插入图片描述
为什么它的大小是4呢?

联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

union Un
{
	int i;
	char c;
};
union Un un;
int main()
{
	// 下面输出的结果是一样的吗?
	printf("%p\n", &(un.i));
	printf("%p\n", &(un.c));
	return 0;
}

在这里插入图片描述
%p 是打印地址的意思,我们可以发现联合体中的变量用的是同一块地址

un.i = 0x11223344;
printf("%x\n", un.i);
un.c = 0x55;
printf("%x\n", un.i);

在这里插入图片描述
打印结果证明我们上面说的是对的
大小端链接位置在2.2
在这里插入图片描述

面试题:

判断当前计算机的大小端存储

union Un
{
	int i;
	char c;
};
int main()
{
	union Un A;
	A.i = 1;
	if (A.c == 1)
	{
		printf("小端模式存储\n");
	}
	else
	{
		printf("大端模式存储\n");
	}
	return 0;
}

在这里插入图片描述

联合大小的计算

  • 联合的大小至少是最大成员的大小。
  • 当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍

比如:

union Un1
{
	char c[5];
	int i;
};
union Un2
{
	short c[7];
	int i;
};
int main()
{
	//下面输出的结果是什么?
	printf("%d\n", sizeof(union Un1));
	printf("%d\n", sizeof(union Un2));
	return 0;
}

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/388877.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Unity记录2.1-动作-多段跳、蹬墙跳、墙体滑落

文章首发及后续更新&#xff1a;https://mwhls.top/4450.html&#xff0c;无图/无目录/格式错误/更多相关请至首发页查看。 新的更新内容请到mwhls.top查看。 欢迎提出任何疑问及批评&#xff0c;非常感谢&#xff01; 汇总&#xff1a;Unity 记录 摘要&#xff1a;实现跳跃、蹬…

若依学习(前后端分离版)——自定义注解@Log(如何自定义注解,实现aop)

如何自定义注解 aop的基本知识与应用 若依对用户的一些更新删除等敏感操作操作进行了日志记录 注解定义和切面处理的项目位置 第一步&#xff1a;自定义注解log 定义了注解的相关信息。这里定义的属性可以在使用时加以定义 注解Target和Retention的作用 第二步切面逻辑…

动手实现一遍Transformer

最近乘着ChatGpt的东风&#xff0c;关于NLP的研究又一次被推上了风口浪尖。在现阶段的NLP的里程碑中&#xff0c;无论如何无法绕过Transformer。《Attention is all you need》成了每个NLP入门者的必读论文。惭愧的是&#xff0c;我虽然使用过很多基于Transformer的模型&#x…

synchronized从入门到踹门

synchronized是什么synchronized是Java关键字&#xff0c;为了维护高并发是出现的原子性问题。技术是把双刃剑&#xff0c;多线程并发给我带来了前所未有的速率&#xff0c;然而在享受快速编程的过程&#xff0c;也给我们带来了原子性问题。如下&#xff1a;public class Main …

【微服务】认识微服务

目录 1.1 单体、分布式、集群 单体 分布式 集群 1.2 系统架构演变 1.2.1 单体应⽤架构 1.2.2 垂直应⽤架构 1.2.3 分布式架构 1.2.4 SOA架构 1.2.5 微服务架构 1.3 微服务架构介绍 微服务架构的常⻅问题 1.4 SpringCloud介绍 1.4.1 SpringBoot和SpringCloud有啥关…

[1.3_2]计算机系统概述——中断和异常

文章目录第一章 计算机系统概述中断和异常&#xff08;一&#xff09;中断的作用&#xff08;二&#xff09;中断的类型&#xff08;三&#xff09;中断机制的基本原理小结第一章 计算机系统概述 中断和异常 中断的作用中断的类型 内中断&#xff08;也称“异常”&#xff09;…

ES之DSL查询文档基础查询

分类 query查询分类 总体规律就是逻辑性的&#xff0c;从外层的你干嘛&#xff0c;到下一层的查询类型&#xff0c;再到下一层的查询字段&#xff08;如果需要的话&#xff09;和然后是查询内容 查询所有 语法 get /索引库名/_serarch {"query":{"查询条件…

【Linux】配置动态IP

动态IP 服务器重启完成之后&#xff0c;我们可以通过linux的指令 ip addr 来查询Linux系统的IP地址&#xff0c;具体信息如 下: 从图中我们可以看到&#xff0c;并没有获取到linux系统的IP地址&#xff0c;这是为什么呢&#xff1f;这是由于启动服务器时未 加载网卡&#x…

2D图像处理:Qt + Opencv使用光度立体法检测Halcon中提供的缺陷图像

文章目录 不需知道光源方向一、光度立体法(后续有时间在查资料研究)1.1 问题1:Slants和Tilts的理解(暂时是理解的)1.2 问题1:Gradient通道数为1,为何像素点对应的值会有两个?1.3 问题2:F(r,c)=(u(r,c),v(r,c)) 关于高斯曲率和平均曲率如何计算的?二、非标定光源实现光…

C++经典20题型,满满知识,看这一篇就够了(含答案)

今天找了20道c的经典题型&#xff0c;看这一篇就够了&#xff0c;全是干货 目录 1、题目&#xff1a;有一对兔子&#xff0c;从出生后第3个月起每个月都生一对兔子&#xff0c;小兔子长到第三个月后每个月又生一对兔子&#xff0c;假如兔子都不死&#xff0c;问每个月的兔子总…

【蓝桥杯集训11】BFS(4 / 4)

目录 844. 走迷宫 - BFS求最短路 1233. 全球变暖 - BFS 845. 八数码 - 最短路BFS 状态表示 一二维坐标转换 为什么BFS保证走的是最短路&#xff1f; 一二维坐标转换&#xff08;nn矩阵&#xff09; 1562.微博转发 - BFS按层遍历 有向图 844. 走迷宫 - BFS求最短路 活…

Centos7安装中文字体

一、背景 最近一直在重写2021年毕设的前端页面&#xff0c;用vue3vite实现的响应式布局&#xff0c;目前完成10%。但在部署到Linux上时&#xff0c;遇到了服务端生成的中文验证码混乱的问题&#xff0c;通过远程断点&#xff0c;排除编码的问题&#xff0c;原来是由于Linux没有…

Linux网络编程 第六天

目录 学习目标 libevent介绍 libevent的安装 libevent库的使用 libevent的使用 libevent的地基-event_base 等待事件产生-循环等待event_loop 使用libevent库的步骤&#xff1a; 事件驱动-event 编写一个基于event实现的tcp服务器&#xff1a; 自带buffer的事件-buff…

深圳大学计软《面向对象的程序设计》实验14 运算符重载2和函数模板

A. 日期比较&#xff08;运算符重载之类型转换&#xff09; 题目描述 定义一个日期类CDate&#xff0c;包含属性&#xff1a;年、月、日&#xff0c;都是整数。 构造函数含单个参数&#xff0c;参数是八位整数&#xff0c;默认值为0&#xff0c;实现整数转为日期类型&#x…

【基于感知损失的无监督泛锐化】

PercepPan: Towards Unsupervised Pan-Sharpening Based on Perceptual Loss &#xff08;PercepPan&#xff1a;基于感知损失的无监督泛锐化&#xff09; 在基于神经网络的全色锐化文献中&#xff0c;作为地面实况标签的高分辨率多光谱图像通常是不可用的。为了解决这个问题…

C++初学笔记整理

目录 1. C关键字 2. 命名空间 1&#xff09;命名空间的引入和概述 2&#xff09;命名空间的定义 3&#xff09;std与命名空间的使用 4).相关特性 3. C输入&输出 4. 缺省参数 1 &#xff09;缺省参数概念 2&#xff09;使用及分类 a.全缺省 b.部分缺省 5. 函数…

力扣-337打家劫舍III(dp)

力扣-337打家劫舍III 1、题目 337. 打家劫舍 III 小偷又发现了一个新的可行窃的地区。这个地区只有一个入口&#xff0c;我们称之为 root 。 除了 root 之外&#xff0c;每栋房子有且只有一个“父“房子与之相连。一番侦察之后&#xff0c;聪明的小偷意识到“这个地方的所有…

【FMCW 01】中频IF信号

FMCW信号 调频连续波(frequency modulated continuous wave&#xff0c;FMCW)顾名思义&#xff0c;就是对信号的频率进行线性调制的信号。 从时域上看&#xff0c;对频率的调制&#xff0c;就像一把连续的锯齿波。其中每一个锯齿叫做一个chirp&#xff0c;其持续的时间叫做ch…

Android仿微信选择图片

效果展示首先先添加用到的权限<uses-permission android:name"android.permission.INTERNET" /><!--获取手机存储卡权限--><uses-permission android:name"android.permission.READ_EXTERNAL_STORAGE"/><uses-permission android:nam…

java 包装类 万字详解(通俗易懂)

前言简介和溯源拆装箱String类和基本类型的相互转化String类和包装类型的相互转化八大包装类的常用方法汇总&#xff08;含代码演示&#xff09;一、前言 : 本节内容是我们《API-常用类》专题的最后一节了。本节内容主要讲包装类&#xff0c;内容包括但不限于包装类的诞生&…