Python机器学习实战(一)

news2024/11/26 18:23:20

文章目录

  • 基于逻辑回归实现乳腺癌预测
  • 基于k-近邻算法实现鸢尾花分类
  • 基于决策树实现葡萄酒分类
  • 基于朴素贝叶斯实现垃圾短信分类
  • 基于支持向量机实现葡萄酒分类
  • 基于高斯混合模型实现鸢尾花分类
  • 基于主成分分析实现鸢尾花数据降维
  • 基于奇异值分解实现图片压缩

基于逻辑回归实现乳腺癌预测

# 基于逻辑回归实现乳腺癌预测
from sklearn.datasets import load_breast_cancer
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(cancer.data,cancer.target,test_size=0.2)
model=LogisticRegression(max_iter=10000)
model.fit(X_train,y_train)
train_score=model.score(X_train,y_train)
test_score=model.score(X_test,y_test)
print('train_score:{train_score:.6f};test_score:{test_score:.6f}'.format(train_score=train_score,test_score=test_score))
train_score:0.960440;test_score:0.964912
# 模型评估
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
y_pred=model.predict(X_test)
accuracy_score_value=accuracy_score(y_test,y_pred)
recall_score_value=recall_score(y_test,y_pred)
precision_score_value=precision_score(y_test,y_pred)
classification_report_value=classification_report(y_test,y_pred)
print("准确率:",accuracy_score_value)
print("召回率:",recall_score_value)
print("精确率:",precision_score_value)
print(classification_report_value)

在这里插入图片描述

基于k-近邻算法实现鸢尾花分类

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN
iris=load_iris()
x_train,x_test,y_train,y_test=train_test_split(iris.data[:,[1,3]],iris.target)
model=KNN()# 默认n_neighbors=5
model.fit(x_train,y_train)
train_score=model.score(x_train,y_train)
test_score=model.score(x_test,y_test)
print("train_score",train_score)
print("test_score",test_score)
train_score 0.9553571428571429
test_score 0.9736842105263158

基于决策树实现葡萄酒分类

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
wine=load_wine()
x_train,x_test,y_train,y_test=train_test_split(wine.data,wine.target)
clf=DecisionTreeClassifier(criterion="entropy")
clf.fit(x_train,y_train)
train_score=clf.score(x_train,y_train)
test_score=clf.score(x_test,y_test)
print("train_score",train_score)
print("test_score",test_score)
train_score 1.0
test_score 0.9333333333333333

基于朴素贝叶斯实现垃圾短信分类

# 加载SMS垃圾短信数据集
with open('./SMSSpamCollection.txt','r',encoding='utf8') as f:
    sms=[line.split('\t') for line in f]
y,x=zip(*sms)
# SMS垃圾短信数据集特征提取
from sklearn.feature_extraction.text import CountVectorizer as CV
from sklearn.model_selection import train_test_split
y=[label=='spam' for label in y]
x_train,x_test,y_train,y_test=train_test_split(x,y)
counter=CV(token_pattern='[a-zA-Z]{2,}')
x_train=counter.fit_transform(x_train)
x_test=counter.transform(x_test)
from sklearn.naive_bayes import MultinomialNB as NB
model=NB()
model.fit(x_train,y_train)
train_score=model.score(x_train,y_train)
test_score=model.score(x_test,y_test)
print("train_score",train_score)
print("test_score",test_score)
train_score 0.9925837320574162
test_score 0.9878048780487805

基于支持向量机实现葡萄酒分类

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
wine=load_wine()
x_train,x_test,y_train,y_test=train_test_split(wine.data,wine.target)
model=SVC(kernel='linear')
model.fit(x_train,y_train)
train_score=model.score(x_train,y_train)
test_score=model.score(x_test,y_test)
print("train_score",train_score)
print("test_score",test_score)

kernel参数:

  1. linear:线性核函数
  2. poly:多项式核函数
  3. rbf:径向基核函数/高斯核
  4. sigmod:sigmod核函数
  5. precomputed:提前计算好核函数矩阵
train_score 0.9924812030075187
test_score 1.0

基于高斯混合模型实现鸢尾花分类

from scipy import stats
from sklearn.datasets import load_iris
from sklearn.mixture import GaussianMixture as GMM
import matplotlib.pyplot as plt
iris=load_iris()
model=GMM(n_components=3)
pred=model.fit_predict(iris.data)
print(score(pred,iris.target))
def score(pred,gt):
    assert len(pred)==len(gt)
    m=len(pred)
    map_={}
    for c in set(pred):
        map_[c]=stats.mode(gt[pred==c])[0]
    score=sum([map_[pred[i]]==gt[i] for i in range(m)])
    return score[0]/m
_,axes=plt.subplots(1,2)
axes[0].set_title("ground truth")
axes[1].set_title("prediction")
for target in range(3):
    axes[0].scatter(
        iris.data[iris.target==target,1],
        iris.data[iris.target==target,3],
    )
    axes[1].scatter(
        iris.data[pred==target,1],
        iris.data[pred==target,3],
    )
plt.show()
0.9666666666666667

在这里插入图片描述

基于主成分分析实现鸢尾花数据降维

# 鸢尾花数据集加载与归一化
from sklearn.datasets import load_iris
from sklearn.preprocessing import scale
iris=load_iris()
data,target=scale(iris.data),iris.target
# PCA降维鸢尾花数据集
from sklearn.decomposition import PCA
pca=PCA(n_components=2)
y=pca.fit_transform(data)

基于奇异值分解实现图片压缩

在这里插入图片描述

import numpy as np
from PIL import Image
class SVD:
    def __init__(self,img_path):
        with Image.open(img_path) as img:
            img=np.asarray(img.convert('L'))
        self.U,self.Sigma,self.VT=np.linalg.svd(img)
    def compress_img(self,k:"# singular value") -> "img":
        return self.U[:,:k] @ np.diag(self.Sigma[:k]) @ self.VT[:k,:]
model=SVD('./可莉.jpg')
result=[
    Image.fromarray(model.compress_img(i))
    for i in [1,10,20,50,100,500]
]
import matplotlib.pyplot as plt
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.imshow(result[i])
    plt.axis('off')
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/384630.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

谷歌seo独立站搜索引擎优化指南【2023新版】

作为一个拥有十年操作经验的个人站长,我认为SEO是网站优化的核心,它可以帮助我们的网站在搜索引擎上获得更高的排名和更多的流量。在本篇文章中,我将分享我的谷歌SEO独立站搜索引擎优化指南,希望对您有所帮助。 一、关键词研究 关…

Invalid <url-pattern> [sso.action] in filter mapping

Tomcat 8.5.86版本启动web项目报错Caused by: java.lang.IllegalArgumentException: Invalid <url-pattern> [sso.action] in filter mapping 查看项目的web.xml文件相关片段 <filter-mapping><filter-name>SSOFilter</filter-name><url-pattern&g…

Linux I2C 驱动实验

目录 一、Linux I2C 驱动简介 1、I2C 总线驱动 2、I2C 设备驱动 1、 i2c_client 结构体 2、 i2c_driver 结构体 二、硬件分析 三、设备树编写 1、pinctrl_i2c1 2、在 i2c1 节点追加 ap3216c 子节点 3、验证 四、 代码编写 1、makefile 2、ap3216c.h 3、ap3216c.c …

开发者进阶必备的9个Tips Tricks!

优秀的开发人员市场前景是十分广阔的&#xff0c;但想找到一份理想的工作&#xff0c;仅有代码知识是不够的。优秀的工程师应该是一个终身学习者、问题的创造性解决者&#xff0c;着迷于整个软件世界。要成为一名优秀的开发者&#xff0c;应该具备哪些品质并做出哪些努力&#…

STP详解

STP STP全称为“生成树协议”&#xff08;Spanning Tree Protocol&#xff09;&#xff0c;是一种网络协议&#xff0c;用于在交换机网络中防止网络回路产生&#xff0c;保证网络的稳定和可靠性。它通过在网络中选择一条主路径&#xff08;树形结构&#xff09;&#xff0c;并…

【vulhub漏洞复现】redis 4-unacc 未授权访问漏洞

一、漏洞详情影响版本 Redis 2.x&#xff0c;3.x&#xff0c;4.x&#xff0c;5.xRedis默认情况下&#xff0c;会绑定在0.0.0.0:6379(在redis3.2之后&#xff0c;redis增加了protected-mode&#xff0c;在这个模式下&#xff0c;非绑定IP或者没有配置密码访问时都会报错)&#x…

Linux:https静态网站搭建案例

目录介绍httpshttps通信过程例介绍https 整个实验是在http实验基础上进行的 因为http协议在传输的时候采用的是明文传输&#xff0c;有安全隐患&#xff0c;所以出现了https&#xff08;安全套接字层超文本传输协议&#xff09; HTTPS并不是一个新协议&#xff0c; 而是HTTP…

【YOLO系列】YOLOv5超详细解读(网络详解)

前言 吼吼&#xff01;终于来到了YOLOv5啦&#xff01; 首先&#xff0c;一个热知识&#xff1a;YOLOv5没有发表正式论文哦~ 为什么呢&#xff1f;可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧&#xff0c;hh 目录 前言 一、YOLOv5的网络结构 二、输入端 &#xff08;1…

微软发布多模态版ChatGPT!取名“宇宙一代”

文&#xff5c;CoCo酱Ludwig Wittgenstein曾说过&#xff1a;“我语言的局限&#xff0c;即是我世界的局限”。大型语言模型&#xff08;LLM&#xff09;已成功地作为各种自然语言任务的通用接口&#xff0c;只要我们能够将输入和输出转换为文本&#xff0c;就可以将基于LLM的接…

爱普生L805开机后所有灯一起闪烁不打印

故障现象: 爱普生L805彩色喷墨打印机开机后所有灯全闪烁,不能打印了?(电源灯、WiFi灯闪绿色,状态 灯、墨水灯、缺纸灯闪红色;) </

【正点原子FPGA连载】第二十二章IP封装与接口定义实验 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Vitis开发指南

1&#xff09;实验平台&#xff1a;正点原子MPSoC开发板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id692450874670 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html 第二十二章IP封装…

大话数据结构-树

1 概述 树&#xff08;Tree&#xff09;是n&#xff08;n > 0&#xff09;个结点的有限集。n 0时称为空树。在任意一棵非空树中&#xff1a;   (1) 有且仅有一个特定的称为根&#xff08;root&#xff09;的结点&#xff1b;   (2) 当n > 1时&#xff0c;其余结点可…

(Fabric 超级账本学习【1】)Fabcar网络调用Fabric-Java-SDK进行简单开发 FabCar

Fabric 2.3网络调用Fabric-Java-SDK进行简单开发 FabCar 1、先进入fabcar文件夹 2、启动网络 ./startFabric.sh down 启动成功 3、查看启动情况 docker 镜像 4、新建SpringBoot工程项目。导入如下Fabric依赖包 <dependency><groupId>org.hyperledger.fabric…

【LeetCode】剑指 Offer(14)

目录 题目&#xff1a;剑指 Offer 32 - I. 从上到下打印二叉树 - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 写在最后&#xff1a; 题目&#xff1a;剑指 Offer 32…

缓冲器/驱动器/收发器IC

一、前言 记录学习未使用过的IC&#xff0c;开发使用新的IC&#xff0c;就是玩 本编文章主要介绍缓冲器/驱动器/收发器 目录一、前言二、环境三、正文1.SN74HCT245NSR2.四、结语二、环境 FPGA或MCU低驱动能力引脚 单向长距离信号 三、正文 1.SN74HCT245NSR DIR高电平&#…

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些?

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些? 大家可以参考这个模板&#xff1a;http://s.fanruan.com/irhj8管理项目归根结底在管理人、物&#xff0c;扩展来说便是&#xff1a; 人&#xff1a;员工能力、组织机制&#xff1b; 物&#xff1a;项目内…

01-前端-htmlcss

文章目录HTML&CSS1&#xff0c;HTML1.1 介绍1.2 快速入门1.3 基础标签1.3.1 标题标签1.3.2 hr标签1.3.3 字体标签1.3.4 换行标签1.3.5 段落标签1.3.6 加粗、斜体、下划线标签1.3.7 居中标签1.3.8 案例1.4 图片、音频、视频标签1.5 超链接标签1.6 列表标签1.7 表格标签1.8 布…

charts BarChartView柱状图宽度自适应

ios-charts是一个强大的图表框架&#xff0c;MPAndroidChart在 iOS 上的移植。GitHub地址:https://github.com/danielgindi/Charts.git有一些基础的图标框架来展示,但是实际项目中还是会有所改动的针对charts 的BarChartDataEntry和BarChartRenderer进行了部分修改添加了barWid…

联想配对法

一、课程目的1.掌握联想配对法2.实战应用训练二、发挥咱们的想象力使两者发生关系&#xff0c;让图像动起来三、练习&#xff08;1&#xff09;老鼠飞机我们可以想象老鼠开飞机或者飞机撞倒了老鼠&#xff08;2&#xff09;建立联接的方法要点外置法:把一个图像放在另一个外面旋…

【C/C++语言】刷题|双指针|数组|单链表

主页&#xff1a;114514的代码大冒 qq:2188956112&#xff08;欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ &#xff09; Gitee&#xff1a;庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 文章目录 目录 文章目录 前言 一、删除有序数组中的重复项 二、合并两个有序数组 三&#xff0c;移除…