【YOLO系列】YOLOv5超详细解读(网络详解)

news2024/11/26 18:22:51

前言

吼吼!终于来到了YOLOv5啦!

首先,一个热知识:YOLOv5没有发表正式论文哦~

为什么呢?可能YOLOv5项目的作者Glenn Jocher还在吃帽子吧,hh


目录

前言

一、YOLOv5的网络结构

 二、输入端

(1)Mosaic数据增强

(2)自适应锚框计算

(3)自适应图片缩放

三、Backbone

(1)Focus结构

(2)CSP结构

四、Neck

五、Head

(1)Bounding box损失函数

(2)NMS非极大值抑制

 六、训练策略


前期回顾:

【YOLO系列】YOLOv4论文超详细解读2(网络详解)

【YOLO系列】YOLOv4论文超详细解读1(翻译 +学习笔记)

​​​​​​【YOLO系列】YOLOv3论文超详细解读(翻译 +学习笔记)

【YOLO系列】YOLOv2论文超详细解读(翻译 +学习笔记)

【YOLO系列】YOLOv1论文超详细解读(翻译 +学习笔记)


一、YOLOv5的网络结构

YOLOv5特点: 合适于移动端部署,模型小,速度快

YOLOv5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 就和我们买衣服的尺码大小排序一样,YOLOv5s网络是YOLOv5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。

YOLOv5s的网络结构如下:

(1)输入端 : Mosaic数据增强、自适应锚框计算、自适应图片缩放

(2)Backbone : Focus结构,CSP结构

(3)Neck : FPN+PAN结构

(4)Head : GIOU_Loss

基本组件:

  • CBL: 由Conv+Bn+Leaky_relu激活函数三者组成。
  • Res unit: 借鉴Resnet网络中的残差结构,让网络可以构建的更深。
  • CSPX: 借鉴CSPNet网络结构,由卷积层和X个Res unint模块Concate组成。
  • SPP: 采用1×1,5×5,9×9,13×13的最大池化的方式,进行多尺度融合。

YOLO5算法性能测试图:


 二、输入端

(1)Mosaic数据增强

YOLOv5在输入端采用了Mosaic数据增强Mosaic 数据增强算法将多张图片按照一定比例组合成一张图片,使模型在更小的范围内识别目标。Mosaic 数据增强算法参考 CutMix数据增强算法。CutMix数据增强算法使用两张图片进行拼接,而 Mosaic 数据增强算法一般使用四张进行拼接,但两者的算法原理是非常相似的。

Mosaic数据增强的主要步骤为:

(1)随机选取图片拼接基准点坐标(xc,yc),另随机选取四张图片。

(2)四张图片根据基准点,分别经过尺寸调整和比例缩放后,放置在指定尺寸的大图的左上,右上,左下,右下位置。

(3)根据每张图片的尺寸变换方式,将映射关系对应到图片标签上。

(4)依据指定的横纵坐标,对大图进行拼接。处理超过边界的检测框坐标。

采用Mosaic数据增强的方式有几个优点:

(1)丰富数据集: 随机使用4张图像,随机缩放后随机拼接,增加很多小目标,大大增加了数据多样性。

(2)增强模型鲁棒性: 混合四张具有不同语义信息的图片,可以让模型检测超出常规语境的目标。

(3)加强批归一化层(Batch Normalization)的效果: 当模型设置 BN 操作后,训练时会尽可能增大批样本总量(BatchSize),因为 BN 原理为计算每一个特征层的均值和方差,如果批样本总量越大,那么 BN 计算的均值和方差就越接近于整个数据集的均值和方差,效果越好。

(4)Mosaic 数据增强算法有利于提升小目标检测性能: Mosaic 数据增强图像由四张原始图像拼接而成,这样每张图像会有更大概率包含小目标,从而提升了模型的检测能力。


 (2)自适应锚框计算

之前我们学的 YOLOv3、YOLOv4,对于不同的数据集,都会计算先验框 anchor。然后在训练时,网络会在 anchor 的基础上进行预测,输出预测框,再和标签框进行对比,最后就进行梯度的反向传播。

在 YOLOv3、YOLOv4 中,训练不同的数据集时,是使用单独的脚本进行初始锚框的计算在 YOLOv5 中,则是将此功能嵌入到整个训练代码里中。所以在每次训练开始之前,它都会根据不同的数据集来自适应计算 anchor。

but,如果觉得计算的锚框效果并不好,那你也可以在代码中将此功能关闭哈~

自适应的计算具体过程:

    ①获取数据集中所有目标的宽和高。

    ②将每张图片中按照等比例缩放的方式到 resize 指定大小,这里保证宽高中的最大值符合指定大小。

    ③将 bboxes 从相对坐标改成绝对坐标,这里乘以的是缩放后的宽高。

    ④筛选 bboxes,保留宽高都大于等于两个像素的 bboxes。

    ⑤使用 k-means 聚类三方得到n个 anchors,与YOLOv3、YOLOv4 操作一样。

    ⑥使用遗传算法随机对 anchors 的宽高进行变异。倘若变异后的效果好,就将变异后的结果赋值给 anchors;如果变异后效果变差就跳过,默认变异1000次。这里是使用 anchor_fitness 方法计算得到的适应度 fitness,然后再进行评估。 


(3)自适应图片缩放

步骤:

(1) 根据原始图片大小以及输入到网络的图片大小计算缩放比例

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

(2) 根据原始图片大小与缩放比例计算缩放后的图片大小

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

(3) 计算黑边填充数值

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

注意:

(1)Yolov5中填充的是灰色,即(114,114,114)。

(2)训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

(3)为什么np.mod函数的后面用32?

因为YOLOv5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。以免产生尺度太小走不完stride(filter在原图上扫描时,需要跳跃的格数)的问题,再进行取余。


三、Backbone

(1)Focus结构

Focus模块在YOLOv5中是图片进入Backbone前,对图片进行切片操作,具体操作是在一张图片中每隔一个像素拿到一个值,类似于邻近下采样,这样就拿到了四张图片,四张图片互补,长得差不多,但是没有信息丢失,这样一来,将W、H信息就集中到了通道空间,输入通道扩充了4倍,即拼接起来的图片相对于原先的RGB三通道模式变成了12个通道,最后将得到的新图片再经过卷积操作,最终得到了没有信息丢失情况下的二倍下采样特征图。

以YOLOv5s为例,原始的640 × 640 × 3的图像输入Focus结构,采用切片操作,先变成320 × 320 × 12的特征图,再经过一次卷积操作,最终变成320 × 320 × 32的特征图。

切片操作如下:

 

作用: 可以使信息不丢失的情况下提高计算力

不足:Focus 对某些设备不支持且不友好,开销很大,另外切片对不齐的话模型就崩了。

后期改进: 在新版中,YOLOv5 将Focus 模块替换成了一个 6 x 6 的卷积层。两者的计算量是等价的,但是对于一些 GPU 设备,使用 6 x 6 的卷积会更加高效。


 (2)CSP结构

YOLOv4网络结构中,借鉴了CSPNet的设计思路,在主干网络中设计了CSP结构。

YOLOv5与YOLOv4不同点在于,YOLOv4中只有主干网络使用了CSP结构。 而YOLOv5中设计了两种CSP结构,以YOLOv5s网络为例,CSP1_ X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。


四、Neck

YOLOv5现在的Neck和YOLOv4中一样,都采用FPN+PAN的结构。但是在它的基础上做了一些改进操作:YOLOV4的Neck结构中,采用的都是普通的卷积操作而YOLOV5的Neck中,采用CSPNet设计的CSP2结构,从而加强了网络特征融合能力。

结构如下图所示,FPN层自顶向下传达强语义特征,而PAN塔自底向上传达定位特征:


  五、Head

(1)Bounding box损失函数

YOLO v5采用CIOU_LOSS 作为bounding box 的损失函数。(关于IOU_ Loss、GIOU_ Loss、DIOU_ Loss以及CIOU_Loss的介绍,请看YOLOv4那一篇:【YOLO系列】YOLOv4论文超详细解读2(网络详解))


(2)NMS非极大值抑制

NMS 的本质是搜索局部极大值,抑制非极大值元素。

非极大值抑制,主要就是用来抑制检测时冗余的框。因为在目标检测中,在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,所以我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。

算法流程:

  1.对所有预测框的置信度降序排序

  2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的 IOU

  3.根据步骤2中计算的 IOU 去除重叠度高的,IOU > threshold 阈值就直接删除

  4.剩下的预测框返回第1步,直到没有剩下的为止


 SoftNMS:

当两个目标靠的非常近时,置信度低的会被置信度高的框所抑制,那么当两个目标靠的十分近的时候就只会识别出一个 BBox。为了解决这个问题,可以使用 softNMS。

它的基本思想是用稍低一点的分数来代替原有的分数,而不是像 NMS 一样直接置零。


 六、训练策略

(1)多尺度训练(Multi-scale training)。 如果网络的输入是416 x 416。那么训练的时候就会从 0.5 x 416 到 1.5 x 416 中任意取值,但所取的值都是32的整数倍。

(2)训练开始前使用 warmup 进行训练。 在模型预训练阶段,先使用较小的学习率训练一些epochs或者steps (如4个 epoch 或10000个 step),再修改为预先设置的学习率进行训练。

(3)使用了 cosine 学习率下降策略(Cosine LR scheduler)。

(4)采用了 EMA 更新权重(Exponential Moving Average)。 相当于训练时给参数赋予一个动量,这样更新起来就会更加平滑。

(5)使用了 amp 进行混合精度训练(Mixed precision)。 能够减少显存的占用并且加快训练速度,但是需要 GPU 支持。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/384619.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

微软发布多模态版ChatGPT!取名“宇宙一代”

文|CoCo酱Ludwig Wittgenstein曾说过:“我语言的局限,即是我世界的局限”。大型语言模型(LLM)已成功地作为各种自然语言任务的通用接口,只要我们能够将输入和输出转换为文本,就可以将基于LLM的接…

爱普生L805开机后所有灯一起闪烁不打印

故障现象: 爱普生L805彩色喷墨打印机开机后所有灯全闪烁,不能打印了?(电源灯、WiFi灯闪绿色,状态 灯、墨水灯、缺纸灯闪红色;) </

【正点原子FPGA连载】第二十二章IP封装与接口定义实验 摘自【正点原子】DFZU2EG_4EV MPSoC之嵌入式Vitis开发指南

1&#xff09;实验平台&#xff1a;正点原子MPSoC开发板 2&#xff09;平台购买地址&#xff1a;https://detail.tmall.com/item.htm?id692450874670 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/thread-340252-1-1.html 第二十二章IP封装…

大话数据结构-树

1 概述 树&#xff08;Tree&#xff09;是n&#xff08;n > 0&#xff09;个结点的有限集。n 0时称为空树。在任意一棵非空树中&#xff1a;   (1) 有且仅有一个特定的称为根&#xff08;root&#xff09;的结点&#xff1b;   (2) 当n > 1时&#xff0c;其余结点可…

(Fabric 超级账本学习【1】)Fabcar网络调用Fabric-Java-SDK进行简单开发 FabCar

Fabric 2.3网络调用Fabric-Java-SDK进行简单开发 FabCar 1、先进入fabcar文件夹 2、启动网络 ./startFabric.sh down 启动成功 3、查看启动情况 docker 镜像 4、新建SpringBoot工程项目。导入如下Fabric依赖包 <dependency><groupId>org.hyperledger.fabric…

【LeetCode】剑指 Offer(14)

目录 题目&#xff1a;剑指 Offer 32 - I. 从上到下打印二叉树 - 力扣&#xff08;Leetcode&#xff09; 题目的接口&#xff1a; 解题思路&#xff1a; 代码&#xff1a; 过啦&#xff01;&#xff01;&#xff01; 写在最后&#xff1a; 题目&#xff1a;剑指 Offer 32…

缓冲器/驱动器/收发器IC

一、前言 记录学习未使用过的IC&#xff0c;开发使用新的IC&#xff0c;就是玩 本编文章主要介绍缓冲器/驱动器/收发器 目录一、前言二、环境三、正文1.SN74HCT245NSR2.四、结语二、环境 FPGA或MCU低驱动能力引脚 单向长距离信号 三、正文 1.SN74HCT245NSR DIR高电平&#…

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些?

适合小团队协作、任务管理、计划和进度跟踪的项目任务管理工具有哪些? 大家可以参考这个模板&#xff1a;http://s.fanruan.com/irhj8管理项目归根结底在管理人、物&#xff0c;扩展来说便是&#xff1a; 人&#xff1a;员工能力、组织机制&#xff1b; 物&#xff1a;项目内…

01-前端-htmlcss

文章目录HTML&CSS1&#xff0c;HTML1.1 介绍1.2 快速入门1.3 基础标签1.3.1 标题标签1.3.2 hr标签1.3.3 字体标签1.3.4 换行标签1.3.5 段落标签1.3.6 加粗、斜体、下划线标签1.3.7 居中标签1.3.8 案例1.4 图片、音频、视频标签1.5 超链接标签1.6 列表标签1.7 表格标签1.8 布…

charts BarChartView柱状图宽度自适应

ios-charts是一个强大的图表框架&#xff0c;MPAndroidChart在 iOS 上的移植。GitHub地址:https://github.com/danielgindi/Charts.git有一些基础的图标框架来展示,但是实际项目中还是会有所改动的针对charts 的BarChartDataEntry和BarChartRenderer进行了部分修改添加了barWid…

联想配对法

一、课程目的1.掌握联想配对法2.实战应用训练二、发挥咱们的想象力使两者发生关系&#xff0c;让图像动起来三、练习&#xff08;1&#xff09;老鼠飞机我们可以想象老鼠开飞机或者飞机撞倒了老鼠&#xff08;2&#xff09;建立联接的方法要点外置法:把一个图像放在另一个外面旋…

【C/C++语言】刷题|双指针|数组|单链表

主页&#xff1a;114514的代码大冒 qq:2188956112&#xff08;欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ &#xff09; Gitee&#xff1a;庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 文章目录 目录 文章目录 前言 一、删除有序数组中的重复项 二、合并两个有序数组 三&#xff0c;移除…

QT中多项目管理问题,同时构建多个项目

QT中多项目管理问题 0.前言 在编写项目的过程中&#xff0c;当项目比较多时&#xff0c;需要进行统一的管理&#xff0c;这时可以使用qt的子项目管理的方式。 参考&#xff1a; QT 创建多个子项目&#xff0c;以及调用&#xff1a;https://blog.csdn.net/chen1231985111/art…

Docker--(四)--搭建私有仓库(registry、harbor)

私有仓库----registry官方提供registry仓库管理&#xff08;推送、删除、下载&#xff09;私有仓库----harbor私有镜像仓库1.私有仓库----registry官方提供 Docker hub官方已提供容器镜像registry,用于搭建私有仓库 1.1 镜像拉取、运行、查看信息、测试 (一) 拉取镜像 # dock…

企业级分布式数据库 - GaussDB介绍

目录 什么是GaussDB 简介 应用场景 产品架构 产品优势 安全 责任共担 身份认证与访问控制 数据保护技术 审计与日志 ​​​​​​​监控安全风险 ​​​​​​​故障恢复 ​​​​​​​认证证书 GaussDB与其他服务的关系 约束与限制 计费模式 什么是GaussDB …

如何在openKylin操作系统上搭建Qt开发环境

一、获取linux系统下的Qt安装包 Qt官网下载地址&#xff1a;https://download.qt.io 国内镜像下载地址&#xff1a;https://mirrors.cloud.tencent.com/qt/ 。建议用镜像下载速度快。集成安装包在 official_releases/qt 目录下&#xff0c;新地址&#xff1a;https://downloa…

避免重启应用,10倍提升本地研发效率

谁在消耗我们的开发时间&#xff1f; 修改一点代码要重启项目&#xff0c;每次都要浪费很多时间进行方法调试时&#xff0c;要么需要Http请求&#xff0c;要么写个单元测试&#xff0c;非常烦 思考&#xff1a;有没有可能实现热部署随意测试任何一个方法&#xff1f; 热部署 …

开源计划 - 用海量设备汇聚成一台巨型处理器的开源项目

巨型处理器特性1. 由各种能够联网的普通智能设备组成2. 模拟硬件3. 存储器即处理器4. 数据处理的匿名化在2016年的时候&#xff0c;曾经设想过一种处理器。运行在海量的浏览器之上&#xff0c;可用于处理大规模的GPS地理定位距离的运算。后来开始逐渐做了新的延伸&#xff0c;打…

SpringCloud之服务拆分和实现远程调用案例

服务拆分对单体架构项目来说&#xff1a;简单方便&#xff0c;高度耦合&#xff0c;扩展性差&#xff0c;适合小型项目。而对于分布式架构来说&#xff1a;低耦合&#xff0c;扩展性好&#xff0c;但架构复杂&#xff0c;难度大。微服务就是一种良好的分布式架构方案&#xff1…

Git-学习笔记01【Git简介及安装使用】

Java后端 学习路线 笔记汇总表【黑马-传智播客】Git-学习笔记01【Git简介及安装使用】Git-学习笔记02【Git连接远程仓库】Git-学习笔记03【Git分支】目录 01-git的历史 02-git和svn的对比 03-git的安装 04-向本地仓库中添加文件 05-修改文件内容并提交 06-删除本地仓库中…