chatGPT模型原理

news2024/11/25 4:57:36

文章目录

    • 简介
    • Bert
    • GPT 初代
    • GPT-2
    • GPT-3
    • chatGPT
    • 开源ChatGPT

简介

openai 的 GPT 大模型的发展历程。

Bert

2018年,自然语言处理 NLP 领域也步入了 LLM 时代,谷歌出品的 Bert 模型横空出世,碾压了以往的所有模型,直接在各种NLP的建模任务中取得了最佳的成绩。
Bert 所作的事就是从大规模的上亿的文本预料中,随机地扣掉一部分字,形成完形填空题型,不断地学习空格处到底该填写什么。所谓语言模型,就是从大量的数据中学习复杂的上下文联系。

GPT 初代

与此同时,openai 早于 Bert 出品了一个初代 GPT 模型。
他们大致思想是一样的。都基于 Transformer 这种编码器,获取了文本内部的相互联系。
在这里插入图片描述

编解码的概念广泛应用于各个领域,在 NLP 领域,人们使用语言一般包括三个步骤:
接受听到或读到的语言 -> 大脑理解 -> 输出要说的语言。

语言是一个显式存在的东西,但大脑是如何将语言进行理解、转化和存储的,则是一个目前仍未探明的东西。因此,大脑理解语言这个过程,就是大脑将语言编码成一种可理解、可存储形式的过程,这个过程就叫做语言的编码。
相应的,把大脑中想要表达的内容,使用语言表达出来,就叫做语言的解码。
在语言模型中,编码器和解码器都是由一个个的 Transformer 组件拼接在一起形成的。
Transformer编码器组成的 Encoder-decoder模型

两者最主要的区别在于,Bert 仅仅使用了 encoder 也就是编码器部分进行模型训练,GPT 仅仅使用了 decoder 部分。两者各自走上了各自的道路,根据我粗浅的理解,GPT 的decoder 模型更加适应于文本生成领域。

我相信很多的 NLP 从业者对 LLM 的理解也大都停留在此。即,本质上讲,LLM 是一个非常复杂的编码器,将文本表示成一个向量表示,这个向量表示有助于解决 NLP 的任务。

GPT-2

我们一般的 NLP 任务,文本分类模型就只能分类,分词模型就只能分词,机器翻译也就只能完成翻译这一件事,非常不灵活。

GPT-2 主要就是在 GPT 的基础上,又添加了多个任务,扩增了数据集和模型参数,又训练了一番。

既然多个任务都在同一个模型上进行学习,还存在一个问题,这一个模型能承载的并不仅仅是任务本身,“汪小菲的妈是张兰”,这条文字包含的信息量是通用的,它既可以用于翻译,也可以用于分类,判断错误等等。也就是说,信息是脱离具体 NLP 任务存在的,举一反三,能够利用这条信息,在每一个 NLP 任务上都表现好,这个是 元学习(meta-learning),实际上就是语言模型的一脑多用。

GPT-3

大模型中的大模型
首先, GPT-3 的模型所采用的数据量之大,高达上万亿,模型参数量也十分巨大,学习之复杂,计算之繁复不说了。

在这里插入图片描述
GPT-3 里的大模型计算量是 Bert-base 的上千倍。统统这些都是在燃烧的金钱,真就是 all you need is money。如此巨大的模型造就了 GPT-3 在许多十分困难的 NLP 任务,诸如撰写人类难以判别的文章,甚至编写SQL查询语句,React或者JavaScript代码上优异的表现。
首先 GPT-n 系列模型都是采用 decoder 进行训练的,也就是更加适合文本生成的形式。也就是,输入一句话,输出也是一句话。也就是对话模式。

对话

对话是涵盖一切NLP 任务的终极任务。从此 NLP不再需要模型建模这个过程。比如,传统 NLP 里还有序列标注这个任务,需要用到 CRF 这种解码过程。在对话的世界里,这些统统都是冗余的。

in-context learning

以往的预训练都是两段式的,即,首先用大规模的数据集对模型进行预训练,然后再利用下游任务的标注数据集进行 finetune,时至今日这也是绝大多数 NLP 模型任务的基本工作流程。

在 GPT-3 的预训练阶段,也是按照这样多个任务同时学习的。比如“做数学加法,改错,翻译”同时进行。这其实就类似前段时间比较火的 prompt。
这种引导学习的方式,在超大模型上展示了惊人的效果:只需要给出一个或者几个示范样例,模型就能照猫画虎地给出正确答案。注意啊,是超大模型才可以,一般几亿参数的大模型是不行的。(我们这里没有小模型,只有大模型、超大模型、巨大模型)
在这里插入图片描述

chatGPT

chatGPT 模型上基本上和之前都没有太大变化,主要变化的是训练策略变了。

强化学习
强化学习非常像生物进化,模型在给定的环境中,不断地根据环境的惩罚和奖励(reward),拟合到一个最适应环境的状态。

在这里插入图片描述

开源ChatGPT

https://github.com/hpcaitech/ColossalAI
https://github.com/lucidrains/PaLM-rlhf-pytorch

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/373680.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java中的反射使用

1、获取Class对象的三种方式 1、对象调用Object类的getClass()方法(对象.getClass()) 2、调用类的class属性(类名.class) 3、调用Class类的静态方法(Class.forName(“包名.类名”))常用 Student类 package…

Xcode Developer Document 开发者文档

总目录 iOS开发笔记目录 从一无所知到入门 文章目录IntroDeveloper Documentation 打开方式菜单栏点击 | 快捷键方式另一种打开方式Intro 2016年我在学校学Java的时候,要查某个Java类/方法的用法还得自己手动下载一种.chm格式的开发文档文件&#xff0c…

python爬虫常见错误

python爬虫常见错误前言python常见错误1. AttributeError: WebDriver object has no attribute find_element_by_id1. 问题描述2. 解决办法2. selenium:DeprecationWarning: executable_path has been deprecated, please pass in1. 问题描述2. 解决办法3. 下载了包…

4、算法MATLAB---认识矩阵

认识矩阵1、矩阵定义和基本运算1.1 赋值运算符:1.2 等号运算符:1.3 空矩阵1.4 一行一列矩阵1.5 行矩阵(元素用空格或逗号分隔)1.6 列矩阵(分号表示换行)1.7 m行n列的矩阵:行值用逗号间隔&#x…

SPI总线设备驱动模型

SPI总线设备驱动模型 文章目录SPI总线设备驱动模型参考资料:一、平台总线设备驱动模型二、 数据结构2.1 SPI控制器数据结构2.2 SPI设备数据结构2.3 SPI设备驱动三、 SPI驱动框架3.1 SPI控制器驱动程序3.2 SPI设备驱动程序致谢参考资料: 内核头文件&…

角角的Qt自学日记:Qt的安装

目录 2. 打开下载器,输入账号和密码,然后单击下一步: 3. 分别单击2个单选框,其它不用管,直接单击下一步: 4. 先设置一下安装目录,因为现在Qt基本都好几个g,建议找个内存够的盘。然…

尝试用程序计算Π(3.141592653......)

文章目录1. π\piπ2. 用微积分来计算π\piπ2.1 原理2.2 代码2.3 结果2.4 分析1. π\piπ π\piπ的重要性或者地位不用多说,有时候还是很好奇,精确地π\piπ值是怎么计算出来的。研究π\piπ的精确计算应该是很多数学家计算机科学家努力的方向&#xf…

【老卫搬砖】034期:HarmonyOS 3.1 Beta 1初体验,我在本地模拟器里面刷短视频

今天啊打开这个DevEco Studio的话,已经提示有3.1Beta1版本的一个更新啊。然后看一下它的一些特性。本文也演示了如何在本地模拟器里面运行HarmonyOS版短视频。 主要特性 新特性包括: Added support for Windows 11 64-bit and macOS 13.x OSs, as well…

vue中render函数的作用和参数(vue2中render函数用法)

render 函数是 Vue2.x 新增的一个函数、主要用来提升节点的性能,它是基于 JavaScript 计算。使用 Render 函数将 Template 里面的节点解析成虚拟的 Dom 。Vue 推荐在绝大多数情况下使用模板来创建 HTML。然而在一些场景中,需要 JavaScript 的完全编程能力…

RK3568平台开发系列讲解(驱动基础篇)GIC v3中断控制器

🚀返回专栏总目录 文章目录 一、什么是GIC二、GIC v3中断类型三、GIC v3基本结构3.1、Distributor3.2、CPU interface简介3.3、Redistributor简介3.4、ITS(Interrupt translation service)4、中断状态和处理流程沉淀、分享、成长,让自己和他人都能有所收获!😄 📢ARM多核…

在线文档技术-编辑器篇

这是在线文档技术的第二篇文章,本文将对目前市面上所有的主流编辑器和在线文档进行一次深入的剖析和研究,从而使大家对在线文档技术有更深入的了解,也让更多人能够参与其开发与设计中来。 注意:出于对主流文档产品的尊重&#xf…

【Linux环境配置】7. Linux部署code-server

安装 code-server 两种方法,一种是在线安装,另一种是本地安装。因为主机访问github可能会报443错误,因此这里我推荐使用本地安装方法! 本地安装方法 进入github,搜索code-server找到项目地址:https://gi…

链表(一):移除链表元素、设计链表等力扣经典链表题目

203.移除链表元素相关题目链接:力扣 - 移除链表元素题目重现给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。思路链表的删除操作如上图所示,我们需要先找到要删除的…

不需要高深技术,只需要Python:创建一个可定制的HTTP服务器!

目录 1、编写服务端代码,命名为httpserver.py文件。 2、编写网页htmlcss文件,命名为index.html和style.css文件。 3、复制htmlcss到服务端py文件同一文件夹下。 4、运行服务端程序。 5、浏览器中输入localhost:8080显示如下: 要编写一个简单的能发布…

UML类图中的类图、接口图、关联、聚合、依赖、组合概念的解释

文章目录UML类图依赖和关联的主要区别UML类图 类&#xff1a;类有三层结构 第一层&#xff1a;类的名字第二层&#xff1a;类的属性第三层&#xff1a;类的方法 接口&#xff1a;接口跟类相似&#xff0c;不过多了一个<<interface>>来表示它是一个接口 第一层&a…

华为OD机试用Python实现 -【统一限载货物数最小值】(2023-Q1 新题)

华为OD机试题 华为OD机试300题大纲统一限载货物数最小值题目描述输入描述输出描述说明示例一输入输出说明示例二输入输出说明Python 代码实现算法逻辑华为OD机试300题大纲 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为 OD 清单查…

社畜大学生的Python之pandas学习笔记,保姆入门级教学

接上期&#xff0c;上篇介绍了 NumPy&#xff0c;本篇介绍 pandas。 目录 pandas 入门pandas 的数据结构介绍基本功能汇总和计算描述统计处理缺失数据层次化索引 pandas 入门 Pandas 是基于 Numpy 构建的&#xff0c;让以 NumPy 为中心的应用变的更加简单。 Pandas是基于Numpy…

【20230225】【剑指1】分治算法(中等)

1.重建二叉树class Solution { public:TreeNode* traversal(vector<int>& preorder,vector<int>& inorder){if(preorder.size()0) return NULL;int rootValuepreorder.front();TreeNode* rootnew TreeNode(rootValue);//int rootValuepreorder[0];if(preo…

Java学习--多线程(等待唤醒机制)生产者消费者

3.生产者消费者 3.1生产者和消费者模式概述【应用】 概述 生产者消费者模式是一个十分经典的多线程协作的模式&#xff0c;弄懂生产者消费者问题能够让我们对多线程编程的理解更加深刻。 所谓生产者消费者问题&#xff0c;实际上主要是包含了两类线程&#xff1a; ​ 一类是生…

C++ primer 之 extern

C primer 之 extern什么是声明什么是定义两者有什么区别ertern的作用什么是声明 就是使得名字为程序所知&#xff0c;一个文件如果想使用别处定义的名字就必须包含对那个名字的声明。 什么是定义 负责创建与名字关联的实体。 两者有什么区别 变量声明和声明都规定了变量的…