LeetCode 160. 相交链表 -- 消除长度差

news2024/11/26 3:52:55
  1. 相交链表
    简单
    2K
    相关企业
    给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点,返回 null 。

图示两个链表在节点 c1 开始相交:

题目数据 保证 整个链式结构中不存在环。

注意,函数返回结果后,链表必须 保持其原始结构 。

自定义评测:

评测系统 的输入如下(你设计的程序 不适用 此输入):

intersectVal - 相交的起始节点的值。如果不存在相交节点,这一值为 0
listA - 第一个链表
listB - 第二个链表
skipA - 在 listA 中(从头节点开始)跳到交叉节点的节点数
skipB - 在 listB 中(从头节点开始)跳到交叉节点的节点数
评测系统将根据这些输入创建链式数据结构,并将两个头节点 headA 和 headB 传递给你的程序。如果程序能够正确返回相交节点,那么你的解决方案将被 视作正确答案 。

示例 1:

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,6,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at ‘8’
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,6,1,8,4,5]。
在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
— 请注意相交节点的值不为 1,因为在链表 A 和链表 B 之中值为 1 的节点 (A 中第二个节点和 B 中第三个节点) 是不同的节点。换句话说,它们在内存中指向两个不同的位置,而链表 A 和链表 B 中值为 8 的节点 (A 中第三个节点,B 中第四个节点) 在内存中指向相同的位置。

示例 2:

输入:intersectVal = 2, listA = [1,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at ‘2’
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。
从各自的表头开始算起,链表 A 为 [1,9,1,2,4],链表 B 为 [3,2,4]。
在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。
示例 3:

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。
由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
这两个链表不相交,因此返回 null 。

提示:

listA 中节点数目为 m
listB 中节点数目为 n
1 <= m, n <= 3 * 104
1 <= Node.val <= 105
0 <= skipA <= m
0 <= skipB <= n
如果 listA 和 listB 没有交点,intersectVal 为 0
如果 listA 和 listB 有交点,intersectVal == listA[skipA] == listB[skipB]

进阶:你能否设计一个时间复杂度 O(m + n) 、仅用 O(1) 内存的解决方案?

题解

很有趣的题目,一开始就各种结构修改,查询,想得太复杂了,后来发现,其实把两个链表的长度对齐,然后同时遍历并且判断就行了。

AC代码

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) 
    {
        ListNode * p1=headA, * p2=headB;
        int lenA=0,lenB=0;
        while(p1!=NULL)
        {
            lenA += 1;
            p1 = p1->next;
        }
        while(p2!=NULL)
        {
            lenB += 1;
            p2 = p2->next;
        }
        p1 = headA, p2 = headB;
        while(lenB>lenA)
        {
            p2 = p2->next;
            lenB --;
        }
        while(lenA>lenB)
        {
            p1 = p1->next;
            lenA --;
        }
        while(p1!=NULL&&p2!=NULL)
        {
            if(p1==p2)return p1;
            p1 = p1->next;
            p2 = p2->next;
        }
        return NULL;
    }
};

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/365113.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据服务总线的搭建

关于http协议的基础知识就不介绍了。主要介绍它的报文格式。 如何显示http的报文&#xff1b; 浏览器登录服务端的IP和端口&#xff1a; 服务端接收http客户端发过来的报文&#xff1a;recv(connfd,buffer,1000,0),打印出来。 请求报文格式是请求行&#xff0c;请求头部&#…

系列四、多表查询

一、多表关系 项目开发中&#xff0c;在进行数据库表结构设计时&#xff0c;会根据业务需求及业务模块之间的关系&#xff0c;分析并设计表结 构&#xff0c;由于业务之间相互关联&#xff0c;所以各个表结构之间也存在着各种联系&#xff0c;基本上分为三种&#xff1a;一对多…

【分组CNN:超分】

Image super-resolution with an enhanced group convolutional neural network &#xff08;基于增强型分组卷积神经网络的图像超分辨率&#xff09; 具有较强学习能力的神经网络被广泛应用于超分辨率问题的求解。然而&#xff0c;CNNs依赖于更深层次的网络结构来提高图像超…

2021.3.3idea创建Maven项目

首先new - project - 找到Maven 然后按下图操作&#xff1a;先勾选使用骨架&#xff0c;再找到Maven-archetype-webapp&#xff0c;选中&#xff0c;然后next填写自己想要创建的项目名&#xff0c;然后选择自己的工作空间①、选择自己下载的Maven插件②、选择选择Maven里的sett…

基于Opencv的缺陷检测任务

数据及代码见文末 1.任务需求和环境配置 任务需求:使用opencv检测出手套上的缺陷并且进行计数 环境配置:pip install opencv-python 2.整体流程 首先,我们需要定义几个参数。 图像大小,原图像比较大,首先将图像resize一下再做后续处理图像阈值处理的相应阈值反转阈值的…

git 的使用方法(上 - 指令)

目录前言&#xff1a;一、Git 是什么&#xff1f;二、SVN与Git的最主要的区别&#xff1f;三、Git 安装四、git 配置1. 创建仓库 - repository2. 配置3. 工作流与基本操作五、Git 的使用流程1. 仓库中创建 1.txt文件2. 查看工作区的文件状态3. 添加工作区文件到暂存区4. 创建版…

c++11 之智能指针

文章目录std::shared_ptrstd::weak_ptrstd::unique_ptr智能指针多线程安全问题在实际的 c 开发中&#xff0c;我们经常会遇到诸如程序运行中突然崩溃、程序运行所用内存越来越多最终不得不重启等问题&#xff0c;这些问题往往都是内存资源管理不当造成的。比如&#xff1a; 有…

浅谈Synchronized的原理

文章目录1.引言2.Synchronized使用方式2.1.普通函数2.2.静态函数2.3.代码块3.Synchronized原理4.Synchronized优化4.1.锁粗化4.2.锁消除4.3.锁升级4.4.无锁4.5.锁偏向锁4.6.轻量级锁4.7.重量级锁5.整个锁升级的过程1.引言 在并发编程中Synchronized一直都是元老级的角色&#…

斗地主洗牌发牌-课后程序(JAVA基础案例教程-黑马程序员编著-第六章-课后作业)

【案例6-4】 斗地主洗牌发牌 【案例介绍】 1.任务描述 扑克牌游戏“斗地主”&#xff0c;相信许多人都会玩&#xff0c;本案例要求编写一个斗地主的洗牌发牌程序&#xff0c;要求按照斗地主的规则完成洗牌发牌的过程。一副扑克总共有54张牌&#xff0c;牌面由花色和数字组成…

Linux 定时任务调度(crontab)

一、Crontab Crontab命令用于设置周期性被执行的指令。该命令从标准输入设备读取指令&#xff0c;并将其存放于“crontab”文件中&#xff0c;以供之后读取和执行。 可以使用Crontab定时处理离线任务&#xff0c;比如每天凌晨2点更新数据等&#xff0c;经常用于系统任务调度。…

【Linux】冯.诺依曼体系结构与操作系统

环境&#xff1a;centos7.6&#xff0c;腾讯云服务器Linux文章都放在了专栏&#xff1a;【Linux】欢迎支持订阅&#x1f339;冯.诺依曼体系结构什么是冯诺依曼体系结构&#xff1f;我们如今的计算机比如笔记本&#xff0c;或者是服务器&#xff0c;基本上都遵循冯诺依曼体系结构…

记一次web漏洞挖掘随笔

最近挖了一些漏洞。虽然重复了&#xff0c;但是有参考价值。这边给大家分享下。漏洞重复还是很难受的&#xff0c;转念一想&#xff0c;人生从不是事事如人意的&#xff0c;漏洞重复忽略&#xff0c;不代表失败。先来后到很重要&#xff0c;出场顺序很重要。1.某站rce 忽略理由…

Docker----------DockerFile解析

1. 是什么 Dockerfile是用来构建Docker镜像的文本文件&#xff0c;是由一条条构建镜像所需的指令和参数构成的脚本。 官网&#xff1a;https://docs.docker.com/engine/reference/builder/ 1.编写Dockerfile文件 2.docker build命令构建镜像 3.docker run依镜像运行容器实例…

第47天|LeetCode392. 判断子序列、LeetCode392. 判断子序列

1.题目链接&#xff1a;392. 判断子序列 题目描述&#xff1a; 给定字符串 s 和 t &#xff0c;判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些&#xff08;也可以不删除&#xff09;字符而不改变剩余字符相对位置形成的新字符串。&#xff08;例如&…

Barra模型因子的构建及应用系列四之Residual Volatility因子

一、摘要 在前期的Barra模型系列文章中&#xff0c;我们构建了Size因子、Beta因子和Momentum因子&#xff0c;并分别创建了对应的单因子策略。本节文章将在该系列下进一步构建Residual Volatility因子&#xff0c;该策略在2022年以来跑赢大盘指数&#xff0c;且具有波动小的特…

Linux内核内存管理

目录 一、内核内存管理框架 二、内核中常用动态分配 2.1 kmalloc 2.2 vmalloc 2.3 kmalloc & vmalloc 的比较 2.4 分配选择原则&#xff1a; 三、IO访问-------访问外设控制器的寄存器 四、led驱动 1. 读原理图 2. 查阅SOC芯片手册 3. 编写驱动 一、内核内存管理…

Leetcode之消失的数字轮转数组

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录一、消失的数字一、消失的数字 二、旋转数组 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、消失的数字 这题找出消失的一个数字&#…

自行车出口欧盟CE认证,新版自行车标准ISO 4210:2023与ISO 8098:2023发布

2023年1月&#xff0c;国际标准化组织ISO发布了新版“自行车以及儿童自行车的测试标准”&#xff0c;即ISO 4210&#xff1a;2023以及ISO 8098:2023&#xff0c;用于取代了SO 4210&#xff1a;2015以及ISO 8098:2015。新版标准一经发布&#xff0c;立即生效。欧盟标准化委员会C…

使用 Python 抓取和优化所有网站图像

&#xff0c;我发布了一个通过FTP自动优化新图像的教程。这次我们将抓取整个网站&#xff0c;并在本地优化我们遇到的图像&#xff0c;按URL组织。请注意&#xff0c;这个简短但中级的脚本不适用于大型站点。首先&#xff0c;所有图像都转储到一个文件夹中。为每个页面创建一个…

ASP.NET 网站开发(联合增,删,改,查)

联合多表查询查询&#xff1a; linqDBDataContext db new linqDBDataContext(); stu d db.stu.Where(p > p.sid 2).FirstOrDefault(); if (d ! null) { var Marks d.marks; GridView1.DataSource Marks; GridView1.DataBind(); db.Su…