TCP/IP网络编程——多播与广播

news2024/9/19 10:48:32

完整版文章请参考:
TCP/IP网络编程完整版文章

文章目录

    • 第 14 章 多播与广播
      • 14.1 多播
        • 14.1.1 多播的数据传输方式以及流量方面的优点
        • 14.1.2 路由(Routing)和 TTL(Time to Live,生存时间),以及加入组的办法
        • 14.1.3 实现多播 Sender 和 Receiver
      • 14.2 广播
        • 14.2.1 广播的理解和实现方法
      • 14.2.2 实现广播数据的 Sender 和 Receiver

第 14 章 多播与广播

14.1 多播

多播(Multicast)方式的数据传输是基于 UDP 完成的。因此 ,与 UDP 服务器端/客户端的实现方式非常接近。区别在于,UDP 数据传输以单一目标进行,而多播数据同时传递到加入(注册)特定组的大量主机。换言之,采用多播方式时,可以同时向多个主机传递数据。

14.1.1 多播的数据传输方式以及流量方面的优点

多播的数据传输特点可整理如下:

  • 多播服务器端针对特定多播组,只发送 1 次数据。
  • 即使只发送 1 次数据,但该组内的所有客户端都会接收数据
  • 多播组数可以在 IP 地址范围内任意增加

多播组是 D 类IP地址(224.0.0.0~239.255.255.255),「加入多播组」可以理解为通过程序完成如下声明:

在 D 类IP地址中,我希望接收发往目标 239.234.218.234 的多播数据

多播是基于 UDP 完成的,也就是说,多播数据包的格式与 UDP 数据包相同。只是与一般的 UDP 数据包不同。向网络传递 1 个多播数据包时,路由器将复制该数据包并传递到多个主机。像这样,多播需要借助路由器完成。如图所示:

若通过 TCP 或 UDP 向 1000 个主机发送文件,则共需要传递 1000 次。但是此时如果用多播网络传输文件,则只需要发送一次。这时由 1000 台主机构成的网络中的路由器负责复制文件并传递到主机。就因为这种特性,多播主要用于「多媒体数据实时传输」。

另外,理论上可以完成多播通信,但是不少路由器并不支持多播,或即便支持也因网络拥堵问题故意阻断多播。因此,为了在不支持多播的路由器中完成多播通信,也会使用隧道(Tunneling)技术。

14.1.2 路由(Routing)和 TTL(Time to Live,生存时间),以及加入组的办法

为了传递多播数据包,必须设置 TTL 。TTL 是 Time to Live 的简写,是决定「数据包传递距离」的主要因素。TTL 用整数表示,并且每经过一个路由器就减一。TTL 变为 0 时,该数据包就无法再被传递,只能销毁。因此,TTL 的值设置过大将影响网络流量。当然,设置过小,也无法传递到目标

接下来是 TTL 的设置方法。TTL 是可以通过第九章的套接字可选项完成的。与设置 TTL 相关的协议层为 IPPROTO_IP ,选项名为 IP_MULTICAST_TTL。因此,可以用如下代码把 TTL 设置为 64

int send_sock;
int time_live = 64;
...
send_sock=socket(PF_INET,SOCK_DGRAM,0);
setsockopt(send_sock,IPPROTO_IP,IP_MULTICAST_TTL,(void*)&time_live,sizeof(time_live);
...

加入多播组也通过设置套接字可选项来完成。加入多播组相关的协议层为 IPPROTO_IP,选项名为 IP_ADD_MEMBERSHIP 。可通过如下代码加入多播组:

int recv_sock;
struct ip_mreq join_adr;
...
recv_sock=socket(PF_INET,SOCK_DGRAM,0);
...
join_adr.imr_multiaddr.s_addr="多播组地址信息";
join_adr.imr_interface.s_addr="加入多播组的主机地址信息";
setsockopt(recv_sock,IPPROTO_IP,IP_ADD_MEMBERSHIP,(void*)&join_adr,sizeof(join_adr);
...

下面是 ip_mreq 结构体的定义:

struct ip_mreq
{
    struct in_addr imr_multiaddr; //写入加入组的IP地址
    struct in_addr imr_interface; //加入该组的套接字所属主机的IP地址
};

14.1.3 实现多播 Sender 和 Receiver

多播中用「发送者」(以下称为 Sender) 和「接收者」(以下称为 Receiver)替代服务器端和客户端。顾名思义,此处的 Sender 是多播数据的发送主体,Receiver 是需要多播组加入过程的数据接收主体。下面是示例,示例的运行场景如下:

  • Sender : 向 AAA 组广播(Broadcasting)文件中保存的新闻信息
  • Receiver : 接收传递到 AAA 组的新闻信息。

news_sender.c 程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define TTL 64
#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int send_sock;
    struct sockaddr_in mul_adr;
    int time_live = TTL;
    FILE *fp;
    char buf[BUF_SIZE];
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    send_sock = socket(PF_INET, SOCK_DGRAM, 0); //创建  UDP 套接字
    memset(&mul_adr, 0, sizeof(mul_adr));
    mul_adr.sin_family = AF_INET;
    mul_adr.sin_addr.s_addr = inet_addr(argv[1]); //必须将IP地址设置为多播地址
    mul_adr.sin_port = htons(atoi(argv[2]));
    //指定套接字中 TTL 的信息
    setsockopt(send_sock, IPPROTO_IP, IP_MULTICAST_TTL, (void *)&time_live, sizeof(time_live));
    if ((fp = fopen("news.txt", "r")) == NULL)
        error_handling("fopen() error");

    while (!feof(fp)) //如果文件没结束就返回0
    {
        fgets(buf, BUF_SIZE, fp);
        sendto(send_sock, buf, strlen(buf), 0, (struct sockaddr *)&mul_adr, sizeof(mul_adr));
        sleep(2);
    }
    fclose(fp);
    close(send_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

news_receiver.c 程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int recv_sock;
    int str_len;
    char buf[BUF_SIZE];
    struct sockaddr_in adr;
    struct ip_mreq join_adr;
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    recv_sock = socket(PF_INET, SOCK_DGRAM, 0);
    memset(&adr, 0, sizeof(adr));
    adr.sin_family = AF_INET;
    adr.sin_addr.s_addr = htonl(INADDR_ANY);
    adr.sin_port = htons(atoi(argv[2]));

    if (bind(recv_sock, (struct sockaddr *)&adr, sizeof(adr)) == -1)
        error_handling("bind() error");
    //初始化结构体
    join_adr.imr_multiaddr.s_addr = inet_addr(argv[1]); //多播组地址
    join_adr.imr_interface.s_addr = htonl(INADDR_ANY);  //待加入的IP地址
    //利用套接字选项 IP_ADD_MEMBERSHIP 加入多播组,完成了接受指定的多播组数据的所有准备
    setsockopt(recv_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (void *)&join_adr, sizeof(join_adr));

    while (1)
    {
        //通过 recvfrom 函数接受多播数据。如果不需要知道传输数据的主机地址信息,可以向recvfrom函数的第5 6参数分贝传入 NULL 0
        str_len = recvfrom(recv_sock, buf, BUF_SIZE - 1, 0, NULL, 0);
        if (str_len < 0)
            break;
        buf[str_len] = 0;
        fputs(buf, stdout);
    }
    close(recv_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

通过结果可以看出,使用 sender 多播信息,通过 receiver 接收广播,如果延迟运行 receiver 将无法接受之前发送的信息。

14.2 广播

广播(Broadcast)在「一次性向多个主机发送数据」这一点上与多播类似,但传输数据的范围有区别。多播即使在跨越不同网络的情况下,只要加入多播组就能接受数据。相反,广播只能向同一网络中的主机传输数据。

14.2.1 广播的理解和实现方法

广播是向同一网络中的所有主机传输数据的方法。与多播相同,广播也是通过 UDP 来完成的。根据传输数据时使用的IP地址形式,广播分为以下两种:

  • 直接广播(Directed Broadcast)
  • 本地广播(Local Broadcast)

二者在实现上的差别主要在于IP地址。直接广播的IP地址中除了网络地址外,其余主机地址全部设置成 1。例如,希望向网络地址 192.12.34 中的所有主机传输数据时,可以向 192.12.34.255 传输。换言之,可以采取直接广播的方式向特定区域内所有主机传输数据。

反之,本地广播中使用的IP地址限定为 255.255.255.255 。例如,192.32.24 网络中的主机向 255.255.255.255 传输数据时,数据将传输到 192.32.24 网络中所有主机。

数据通信中使用的IP地址是与 UDP 示例的唯一区别。默认生成的套接字会阻止广播,因此,只需通过如下代码更改默认设置。

int send_sock;
int bcast;
...
send_sock=socket(PF_INET,SOCK_DGRAM,0);
...
setsockopt(send_sock,SOL_SOCKET,SO_BROADCAST,(void*)&bcast,sizeof(bcast));
...

14.2.2 实现广播数据的 Sender 和 Receiver

下面是广播数据的 Sender 和 Receiver的代码:

news_sender_brd.c 程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int send_sock;
    struct sockaddr_in broad_adr;
    FILE *fp;
    char buf[BUF_SIZE];
    int so_brd = 1;
    if (argc != 3)
    {
        printf("Usage : %s <GroupIP> <PORT>\n", argv[0]);
        exit(1);
    }
    send_sock = socket(PF_INET, SOCK_DGRAM, 0); //创建  UDP 套接字
    memset(&broad_adr, 0, sizeof(broad_adr));
    broad_adr.sin_family = AF_INET;
    broad_adr.sin_addr.s_addr = inet_addr(argv[1]);
    broad_adr.sin_port = htons(atoi(argv[2]));
    setsockopt(send_sock, SOL_SOCKET, SO_BROADCAST, (void *)&so_brd, sizeof(so_brd));
    if ((fp = fopen("news.txt", "r")) == NULL)
        error_handling("fopen() error");

    while (!feof(fp)) //如果文件没结束就返回0
    {
        fgets(buf, BUF_SIZE, fp);
        sendto(send_sock, buf, strlen(buf), 0, (struct sockaddr *)&broad_adr, sizeof(broad_adr));
        sleep(2);
    }
    fclose(fp);
    close(send_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

news_receiver_brd.c 程序:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>

#define BUF_SIZE 30
void error_handling(char *message);

int main(int argc, char *argv[])
{
    int recv_sock;
    int str_len;
    char buf[BUF_SIZE];
    struct sockaddr_in adr;
    if (argc != 2)
    {
        printf("Usage : %s <PORT>\n", argv[0]);
        exit(1);
    }
    recv_sock = socket(PF_INET, SOCK_DGRAM, 0);
    memset(&adr, 0, sizeof(adr));
    adr.sin_family = AF_INET;
    adr.sin_addr.s_addr = htonl(INADDR_ANY);
    adr.sin_port = htons(atoi(argv[1]));

    if (bind(recv_sock, (struct sockaddr *)&adr, sizeof(adr)) == -1)
        error_handling("bind() error");
    while (1)
    {
        //通过 recvfrom 函数接受数据。如果不需要知道传输数据的主机地址信息,可以向recvfrom函数的第5 6参数分贝传入 NULL 0
        str_len = recvfrom(recv_sock, buf, BUF_SIZE - 1, 0, NULL, 0);
        if (str_len < 0)
            break;
        buf[str_len] = 0;
        fputs(buf, stdout);
    }
    close(recv_sock);
    return 0;
}

void error_handling(char *message)
{
    fputs(message, stderr);
    fputc('\n', stderr);
    exit(1);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/359010.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32开发(11)----CubeMX配置独立看门狗(IWDG)

CubeMX配置独立看门狗&#xff08;IWDG&#xff09;前言一、独立看门狗的介绍二、实验过程1.STM32CubeMX配置独立看门狗2.代码实现3.硬件连接4.实验结果总结前言 本章介绍使用STM32CubeMX对独立看门狗定时器进行配置的方法。门狗本质上是一个定时器&#xff0c;提供了更高的安…

华为云计算之容灾技术

容灾是物理上的容错技术&#xff0c;不是逻辑上的容错同步远程复制&#xff1a;主备距离≤200km&#xff0c;只有在主备设备上都写成功&#xff0c;才会告诉主机写成功&#xff0c;不会丢失数据异步远程复制&#xff1a;主备距离&#xff1e;200km&#xff0c;只要主设备上写成…

掌握MySQL分库分表(二)Mysql数据库垂直分库分表、水平分库分表

文章目录垂直分表拆分方法举例垂直分库水平分表水平分库小结垂直角度&#xff08;表结构不一样&#xff09;水平角度&#xff08;表结构一样&#xff09;垂直分表 需求&#xff1a;商品表字段太多&#xff0c;每个字段访问频次不⼀样&#xff0c;浪费了IO资源&#xff0c;需要…

标题标题标题

图床&#xff08;Typora uPic/PicGo 七牛云&#xff09; 图床&#xff08;Typora uPic/PicGo 七牛云&#xff09; 笔者平时使用 Typora 编写 markdown 文档&#xff0c;文档中常常会放置图片&#xff0c;如果文档不需要分享的话&#xff0c;其实讲图片存放在本地就可以了…

SpringCloud alibaba-Sentinel服务降级策略

文章目录RT&#xff1a;异常比例&#xff1a;异常数&#xff1a;RT&#xff1a; 平均响应时间 (DEGRADE_GRADE_RT)&#xff1a;当 1s 内持续进入 N 个请求&#xff0c;对应时刻的平均响应时间&#xff08;秒级&#xff09;均超过阈值&#xff08;count&#xff0c;以 ms 为单位…

一文吃透 Spring 中的IOC和DI(二)

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…

【前端八股文】浏览器系列:单进程与多进程、浏览器进程、异步、事件循环、同源策略、输入URL回车后、TCP三次挥手四次握手

文章目录概述单进程VS多进程浏览器进程主要分为异步场景事件循环同源策略与跨域问题输入URL回车后过程URL几大部分TCP连接与释放TCP三次握手TCP四次挥手参考本系列目录&#xff1a;【前端八股文】目录总结 是以《代码随想录》八股文为主的笔记。详情参考在文末。 代码随想录的博…

AI又进化了,突破性革命来了

大家好&#xff0c;我是 Jack。 2023 年&#xff0c;AI 真的杀疯了。短短不到一年的时间&#xff0c;当我们还在感慨 AI 一键生成的二次元画作精美万分的时候&#xff0c;它已经进化到了写实美照也能手到擒来的地步。 更多的效果&#xff0c;可以看刚刚发布的视频&#xff0c;…

Java爬虫系列 - 爬虫补充内容+ElasticSearch展示数据

一&#xff0c;定时任务Cron表达式Component public class TaskTest {Scheduled(cron "0/5 * * * * *") // 从0秒开始&#xff0c;每个五秒 执行一次 { 秒 分 时 天 月 周 }public void test(){System.out.println("定时任务执行了");} }二&#xff0c;网…

第一章 初识 Spring Security

第一章 初识 Spring Security 1、权限管理 权限管理 基本上涉及到用户参与的系统都要进行权限管理&#xff0c;权限管理属于系统安全的范畴&#xff0c;权限管理实现了对用户访问系统的控制&#xff0c;按照安全规则或者安全策略控制用户可以访问而且只能访问自己被授权的资…

【白话科普】聊聊网络架构变革的关键——SDN

最近二狗子在网上冲浪的时候&#xff0c;不小心将 CDN 搜索成了 SDN&#xff0c;结果跳出来了一大堆相关的知识点。 好学的二狗子当然不会随随便便糊弄过去&#xff0c;于是认认真真学习了好久&#xff0c;终于了解了 SDN 是什么。 原来&#xff0c;SDN 的全称是 Software De…

第十一届“泰迪杯”数据挖掘挑战赛携“十万”大奖火热来袭

第十一届“泰迪杯”数据挖掘挑战赛 竞赛组织 主办单位&#xff1a; 泰迪杯数据挖掘挑战赛组织委员会 承办单位&#xff1a; 广东泰迪智能科技股份有限公司 人民邮电出版社 协办单位&#xff1a; 重庆市工业与应用数学学会、广东省工业与应用数学学会、广西数学学会、河北省工业…

心跳机制Redis

 进入命令传播阶段候&#xff0c;master与slave间需要进行信息交换&#xff0c;使用心跳机制进行维护&#xff0c;实现双方连接保持在线 master心跳&#xff1a; 指令&#xff1a;PING 周期&#xff1a;由repl-ping-slave-period决定&#xff0c;默认10秒 作用&#…

4|无线传感器网络与应用|无线传感器网络原理及方法-许毅版|第3章:无线传感器网络通信-3.1协议结构 3.2物理层|青岛科技大学|课堂笔记

第3章&#xff1a;无线传感器网络通信3.1协议结构3.1.1 OSI参考模型1.网络通信协议MAC层和物理层采用IEEE 802.15.4协议*(1)物理层wsn物理层负责信号的调制和数据的收发&#xff0c;传输介质&#xff1a;无线电、红外线、光波等。(2)数据链路层wsn数据链路层负责数据成帧、帧检…

光谱实验反射、透射光谱测量

标题反射、透射光谱测量的基本原理  暗背景/基线&#xff1a;Dark………………………………………………………………0%  &#xff08;空&#xff09;白参考&#xff1a;Reference…………………………………………………………100%  样品反射/透射光谱&#xff1a;Sampl…

【Redis】 数据结构:SDS、跳跃表等底层数据结构详解

【Redis】 数据结构&#xff1a;SDS、跳跃表等底层数据结构详解 文章目录【Redis】 数据结构&#xff1a;SDS、跳跃表等底层数据结构详解底层数据结构引入Redis数据结构 - 动态字符串 SDSSDS 概述SDS动态扩容为什么使用SDS小结Redis数据结构 - 整数集 intsetIntSet概述内存布局…

从JDK源码来看XXE的触发原理和对应的防御手段

前言 这几天继续在重写GadgetInspector工具&#xff0c;进一步的增强该自动化工具的source点和sink点&#xff0c;同时增强过程中的漏报和误报的问题。 这里主要是对其中有关于XXE中的两点sink进行几点分析。 sinks DocumentBuilder类 这个JDK中内置的类是一种的DOM型的解…

基础组件之内存池

内存池技术 操作系统在运行进程的过程中&#xff0c;会产生内存碎片&#xff0c;降低了内存的使用率。内存池技术就是为了解决/减少内存碎片的一种方法&#xff0c;内部底层的具体实现根据不同业务场景使用不要的方式&#xff0c;以下是一种好理解的方式&#xff0c;供大家一起…

光学分辨率光声显微镜中基于深度学习的运动校正算法

在这项研究中&#xff0c;我们提出了一种基于深度学习的方法来校正光学分辨率光声显微镜 (OR-PAM) 中的运动伪影。该方法是一种卷积神经网络&#xff0c;它从具有运动伪影的输入原始数据建立端到端映射&#xff0c;以输出校正后的图像。首先&#xff0c;我们进行了仿真研究&…

PYTHON爬虫基础

一、安装package 在使用爬虫前&#xff0c;需要先安装三个包&#xff0c;requests、BeautifulSoup、selenium。 输入如下代码&#xff0c;若无报错&#xff0c;则说明安装成功。 import requests from bs4 import BeautifulSoup import selenium二、Requests应用 了解了原理…