深入浅出C语言——数据在内存中的存储

news2025/3/12 1:25:41

文章目录

  • 一、数据类型详细介绍
    • 1. C语言中的内置类型
    • 2. 类型的基本归类:
  • 二. 整形在内存中的存储
    • 1. 原码、反码、补码
    • 2. 大小端
  • 三.浮点数存储规则


一、数据类型详细介绍

1. C语言中的内置类型

   C语言的内置类型有char、short、int、long、long long、float、double,内置类型所占存储空间的大小如下所示:

char 		//字符数据类型 	1
short 		//短整型     	2
int 		//整形        	4
long 		//长整型    		4/8
long long 	//更长的整形  	8
float 		//单精度浮点数    4
double 		//双精度浮点数   	8

C语言中类型的意义

  1. 使用这个类型开辟内存空间的大小,大小决定了使用范围。
  2. 如何看待内存空间的视角。

2. 类型的基本归类:

整形家族:

charunsigned charsigned char

  属于整形家族, 因为char虽然是字符类型,但是字符类型存储的时候,存储的是字符的ASCII码值,ASCII值是整数。另外,当在编译器中输入char c1;时,c1到底是有符号还是无符号的是不确定的,是取决于编译器实现的,一般情况下char相当于singed char。有符号字符类型取值范围是-128 ~ 127,无符号字符类型取值范围是0~255。

shortunsigned shortsigned short

  属于整数家族,short等价于signed short,取值范围是 -32768~32767,unsigned short是无符号的short,取值范围是0 ~ 65535。

intunsigned intsigned int

  属于整数家族,int是有符号的int等价于singed int。

longunsigned longsigned long

  属于整数家族,long是有符号的long等价于signed long。


数据的最高位

  有正负的的数据可以放在有符号的变量中,只有正数的数据可以放在无符号的变量中。如果是有符号的数据,最高位表示的是符号位。最高位是0,表示正数;最高位是1,表示负数,如果对于无符号的数据来说,最高位也是数据位。


浮点数家族:

floatdoublelong double

构造类型:

结构体类型枚举类型联合类型
structenumunion

指针类型

int* pichar* pcfloat* pfvoid* pv

空类型:

   void 表示空类型/无类型,通常应用于函数的返回类型、函数的参数、指针类型。


二. 整形在内存中的存储

   一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型而决定的。


1. 原码、反码、补码

   计算机中的整数有三种表示方法,即原码、反码和补码。正数的原、反、补码都相同;负数的原码、反码、补码需要计算,负数的原码直接将数值按照正负数的形式翻译成二进制就可以,反码则将原码的符号位不变,其他位依次按位取反就可以得到了,补码是将反码+1就得到补码。对于整形来说:数据存放内存中其实存放的是补码。

int main()
{
	int a = 10;//整型值
	//原码:00000000000000000000000000001010
	//反码:00000000000000000000000000001010
	//补码:00000000000000000000000000001010

	int b = -10;//整型值
	//原码:10000000000000000000000000001010
	//反码:11111111111111111111111111110101
	//补码:11111111111111111111111111110110
	//      1111 1111 1111 1111 1111 1111 1111 0110
	//      F    F    F     F   F     F    F   6
	//      0x ff ff ff f6 存储到内存中
	return 0;
}

为什么数据在内存中放的是补码

   在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器)。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。


2. 大小端

  大小端即大小端字节序存储。大端字节存序储存储模式是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;小端字节序存储模式是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。


案例

int a = 0X11223344;在内存中存储

在这里插入图片描述


为什么会有大小端模式之分?

  因为在计算机系统中是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型。另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题,因此就导致了大端存储模式和小端存储模式。常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式,很多的ARM和DSP都为小端模式,有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。


判断当前机器的字节序

int check_sys()
{
	int a = 1;
	return *(char*)&a;
}
int main()
{
	int ret = check_sys();
	if (ret == 1)
		printf("小端\n");
	else
		printf("大端\n");
	return 0;
}

三.浮点数存储规则

   整数和浮点数的存储方式是有差异的,浮点数家族包括: float、double、long double 类型。根据国际IEEE754(标准电气和电子工程协会) ,任意一个二进制浮点数V可以表示成下面的形式:(-1)^S * M * 2^E(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。M表示有效数字,大于等于1,小于2;2^E表示指数位。


举例

   十进制的5.0,写成二进制是101.0 ,相当于 1.01×2^2 。那么按照上面V的格式,可以得出s=0,M=1.01,E=2。

   十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,s=1,M=1.01,E=2。


IEEE 754标准

  IEEE754标准规定,对于32位的浮点数(float类型),最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
在这里插入图片描述
  IEEE754标准规定,对于64位的浮点数(double),最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
在这里插入图片描述


保存有效数字M

  M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。


保存指数E

  至于指数E,情况就比较复杂。首先,E为一个无符(unsigned int),这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0~2047。但是,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。


取出指数E

指数E从内存中取出还可以再分成三种情况:

1.E不全为0或不全为1

  当E不全为0或不全为1,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。比如:0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为: 0 01111110 00000000000000000000000

2.E全为0

  当E全为0时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

3.E全为1

  当E全为1时,如果有效数字M全为0,表示±无穷大,正负取决于符号位s


浮点数的比较

  浮点数进行比较的时候不能直接用==去比较,因为浮点数在内存中储存有误差,应该比较浮点数直接的差值是否在允许的精度范围之内。比如一个完整的比较相等的逻辑可以为:

const double eps = 1e-8;
#define Equ(a, b) ((fabs((a)-(b))<(eps))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/343543.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第四章.误差反向传播法—误差反向传播法实现手写数字识别神经网络

第四章.误差反向传播法 4.3 误差反向传播法实现手写数字识别神经网络 通过像组装乐高积木一样组装第四章中实现的层&#xff0c;来构建神经网络。 1.神经网络学习全貌图 1).前提&#xff1a; 神经网络存在合适的权重和偏置&#xff0c;调整权重和偏置以便拟合训练数据的过程称…

2023年1月洗衣机品牌销量排行:总销售额近30亿,海尔品牌领跑

鲸参谋电商大数据2023年1月京东平台“洗衣机”品类完整销售数据出炉&#xff01; 根据鲸参谋电商数据显示&#xff0c;2023年1月在京东平台上&#xff0c;洗衣机的销量为174.5万&#xff0c;相较于2022年12月&#xff0c;环比上涨了5.1%&#xff0c;但相较于去年同期&#xff0…

C语言学习笔记(七): 指针的使用

指针变量 指针是一种特殊的变量&#xff0c;它存储的是某个变量的内存地址。指针变量可以存储内存地址&#xff0c;并且通过指针变量可以间接操作内存中的数据 include <stdio.h> int main() {int a1, * p; //定义指针变量,*是指针运算符p &a; //把a的地…

线段树--RMQ问题

线段树由来算法讲解分析树的数据结构结点四个基本操作例题天才的记忆最大数由来 线段树是RMQ区间最值问题的一种解题方法&#xff0c;在给出的区间是静态不变的时候&#xff0c;可以使用ST算法进行离线查询某个区间的最值&#xff0c;先预处理后进行m次查询&#xff0c;时间复…

9. QML_OpenGL--2. 在QQuick中搭建加载OpenGL框架

1. 说明&#xff1a; OPenGL一般在 QtWidget 中使用&#xff0c;但目前使用 QML 做界面开发是一种趋势&#xff0c;同时在QML中使用OPenGL进行渲染也是十分必要&#xff0c;文章简单介绍如何在QML中使用 OPenGL&#xff0c;搭建了一种基本的框架。整体思路和在 QtWidget 中类似…

RabbitMQ学习(四):消息应答

一、消息应答的概念消费者完成一个任务可能需要一段时间&#xff0c;如果其中一个消费者处理一个长的任务并仅只完成 了部分突然它挂掉了&#xff0c;会发生什么情况。RabbitMQ 一旦向消费者传递了一条消息&#xff0c;便立即将该消 息标记为删除。在这种情况下&#xff0c;突然…

C++中引用的本质以及与指针的区别(c++数据在内存中的分配)

1、引用的意义 引用作为变量别名而存在&#xff0c;因此在一些场合可以替代指针&#xff0c;引用相对于指针来说具有更好的可读性和实用性 // swap函数的实现对比 #include <iostream> using namespace std;void swap1(int a, int b); void swap2(int *p1, int *p2); v…

【数据结构】---顺序表的实现

最近学校开始学习数据结构了&#xff0c;没事就手搓一个顺序表。&#x1f308;线性表线性表是n个具有相同特性的数据元素的有限序列&#xff0c;是一种实际中广泛使用的数据结构&#xff0c;常见的线性表有顺序表、链表、栈、队列、字符串。线性表在逻辑上是线性结构&#xff0…

【C语言学习笔记】:静态库

一、什么是库 库是写好的现有的&#xff0c;成熟的&#xff0c;可以复用的代码。现实中每个程序都要依赖很多基础的底层库&#xff0c;不可能每个人的代码都从零开始&#xff0c;因此库的存在意义非同寻常。 本质上来说库是一种可执行代码的二进制形式&#xff0c;可以被操作…

基于”PLUS模型+“生态系统服务多情景模拟预测实践技术应用

生态系统服务是人类直接或间接从生态系统中获得的惠益&#xff0c;在应对城市挑战和实施可持续发展方面发挥着至关重要的作用。随着全球城市化的快速发展, 频繁的人类活动导致了土地利用的快速变化&#xff0c;导致生态系统结构和功能的变化&#xff0c;影响生态系统服务的供应…

【Nginx】Docker配置ngnix,实现同服务器ip多站点多域名

Docker配置ngnix&#xff0c;实现同服务器ip&#xff0c;多域名映射多站点 本文首发于 慕雪的寒舍 1.说明 一般情况下&#xff0c;我们的域名映射到ip后&#xff0c;默认访问的是80端口。如果你的服务器只部署了一个服务&#xff0c;这样也是够用的。 但是很多项目对性能的占…

CAN总线详细介绍

1.1 CAN是什么&#xff1f; CAN 最终成为国际标准 &#xff08; ISO11898(高速应用)和 ISO11519&#xff08;低速应用&#xff09;&#xff09;&#xff0c;是国际上应用最广泛的现场总线之一。 1.2 CAN总线特点 多主方式: 可以多主方式工作&#xff0c;网络上任意一个节点…

前端学习第一阶段——第五章(上)

5-1 CSS基本选择器 01-CSS层叠样式表导读 02-CSS简介 03-体验CSS语法规范 04-CSS代码风格 05-CSS选择器的作用 06-标签选择器 07-类选择器 08-使用类选择器画盒子 09-类选择器特殊使用-多类名 10-id选择器 11-通配符选择器 5-2 CSS样式 12-font-family设置字体系列 13-font-s…

商场技术点-3

1.后端服务校验 1.1JSR-303介绍 JSR是Java Specification Requests的缩写&#xff0c;意思是Java 规范提案。是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求。任何人都可以提交JSR&#xff0c;以向Java平台增添新的API和服务。JSR已成为Java界的一个…

springboot项目配置文件加密

1背景&#xff1a; springboot项目中要求不能采用明文密码&#xff0c;故采用配置文件加密. 目前采用有密码的有redis nacos rabbitmq mysql 这些配置文件 2技术 2.1 redis nacos rabbitmq 配置文件加密 采用加密方式是jasypt 加密 2.1.1 加密步骤 2.1.2 引入maven依赖 …

Android进阶之路 - StringUtils、NumberUtils 场景源码

忘记是在去年还是前年的时候遇到一个需要检测所传字符串是否为数字的场景&#xff0c;开始使用 NumberUtils.isNumber() 提示错误 &#xff0c;没有解决问题&#xff08;可能是因为依赖版本导致&#xff09;&#xff0c;最后使用的是StringUtils.isNumeric()&#xff0c;当时关…

剑指 Offer 43. 1~n 整数中 1 出现的次数

题目 输入一个整数 n &#xff0c;求1&#xff5e;n这n个整数的十进制表示中1出现的次数。 例如&#xff0c;输入12&#xff0c;1&#xff5e;12这些整数中包含1 的数字有1、10、11和12&#xff0c;1一共出现了5次。 思路 要求出小于等于 n 的非负整数中数字 1 出现的个数…

Prometheus系列(五)grafana web 配置邮件告警

目录 1. contact points&#xff08;创建告警渠道&#xff09; 2. Notification policies&#xff08;创建告警通道匹配规则&#xff09; 3. Alert rules&#xff08;配置告警策略&#xff09; 告警配置 告警页面名词解释&#xff1a; 1. contact points&#xff08;创建告…

玩转数据结构之Java实现线段树

前言 线段树是一种二叉搜索树&#xff0c;线段树的每个结点都存储了一个区间&#xff0c;也可以理解成一个线段&#xff0c;在这些线段上进行搜索操作得到你想要的答案。 线段树的适用范围很广&#xff0c;可以在线维护修改以及查询区间上的最值&#xff0c;求和。更可以扩充到…

一文浅谈sql中的 in与not in,exists与not exists的区别以及性能分析

文章目录1. 文章引言2. 查询对比2.1 in和exists2.2 not in 和not exists2.3 in 与 的区别3. 性能分析3.1 in和exists3.2 NOT IN 与NOT EXISTS4. 重要总结1. 文章引言 我们在工作的过程中&#xff0c;经常使用in&#xff0c;not in&#xff0c;exists&#xff0c;not exists来…