【C++初阶】vector的使用

news2024/12/26 11:30:06

大家好我是沐曦希💕

文章目录

  • 一.vector介绍
  • 二、构造函数
  • 三、遍历
    • 1.[]
    • 2.迭代器
    • 3.范围for
  • 四、容量操作
    • 1.扩容机制
  • 五、增删查改
  • 六、迭代器失效问题


一.vector介绍

  1. vector是表示可变大小数组的序列容器。
  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。
  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。
  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。
  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。
  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好。

二、构造函数

(constructor)构造函数声明接口说明
vector()(重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x);(重点) 拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造

在这里插入图片描述
已经有了使用和模拟实现string的经验,直接上代码。

void test_vector1()
{
	vector<int> v1;  //无参构造
	vector<int> v2(5, 1);  //构造并初始化5个1
	vector<int> v3(v2);  //拷贝构造
	vector<int> v4(v3.begin(), v3.end());  //使用迭代器进行初始化构造
}

在这里插入图片描述
此外,对于vector和string的关系是无法替代的,string类中有一个接口c_str(),转化成C语言的字符串要以\0结尾,所以string类最后会有一个\0,在操作上+=,<<,>>等。而vector是保存字符的动态数组,不会以\0结尾,不保存\0,且vector是T泛型,所以并不存在谁替代谁。

三、遍历

1.[]

在这里插入图片描述

void test(const vector<int>& v)
{
	for (size_t i = 0; i < v.size(); ++i)
	{
		//只读
		cout << v[i] << " ";
	}
	cout << endl;
}
void test_vector2()
{
	vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	for (size_t i = 0; i < v1.size(); ++i)
	{
		//可读可写
		++v1[i];
		cout << v1[i] << " ";
	}
	cout << endl;
	test(v1);
}

在这里插入图片描述

2.迭代器

正向迭代器和反向迭代器

iterator的使用接口说明
begin +end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

在这里插入图片描述
在这里插入图片描述

void PrintVector(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

void test_vector3()
{
	// 使用push_back插入4个数据
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	// 使用迭代器进行遍历打印
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	// 使用迭代器进行修改
	it = v.begin();
	while (it != v.end())
	{
		*it *= 2;
		++it;
	}

	// 使用反向迭代器进行遍历再打印
	// vector<int>::reverse_iterator rit = v.rbegin();
	auto rit = v.rbegin();
	while (rit != v.rend())
	{
		cout << *rit << " ";
		++rit;
	}
	cout << endl;

	PrintVector(v);
}

在这里插入图片描述

3.范围for

void test1(const vector<int>& v)
{
	for (auto e : v)
	{
		//只读
		cout << e << " ";
	}
	cout << endl;
}
void test_vector4()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	for (auto e : v)
	{
		//可读可写
		++e;
		cout << e << " ";
	}
	cout << endl;
	test1(v);
}

在这里插入图片描述

四、容量操作

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vector的size
reserve (重点)改变vector的capacity

在这里插入图片描述
其中,最重要的两个函数是 reserve 和 resize,reserve 只用于扩容,它不改变 size 的大小;而 resize 是扩容加初始化,既会改变 capacity,也会改变 size;
注意:reserve 和 resize,包括后面的 clear 函数都不会缩容,因为缩容需要开辟新空间、拷贝数据、释放旧空间,而对于自定义类型又有可能存在深拷贝问题,时间开销极大;vector 中唯一可能缩容的函数就只有 shrink_to_fit,对于它来说,如果 capacity 大于 size,它会进行缩容,让二者相等。

void test_vector5()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	v.push_back(5);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	v.resize(10, 1);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	v.resize(3, 1);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	v.reserve(10);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	cout << v.size() << endl;
	cout << v.capacity() << endl;
	v.reserve(3);
	cout << v.size() << endl;
	cout << v.capacity() << endl;
}

在这里插入图片描述

1.扩容机制

capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。

void test_vector6()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i)
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

vs下:
在这里插入图片描述
Linux的g++下:
在这里插入图片描述

五、增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insert在position之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
  • push_back和pop_back使用
void test_vector7()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	auto it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	v.pop_back();
	v.pop_back();
	it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

在这里插入图片描述

  • find
    find查找函数由算法库函数提供的一个函数模板,使用时需要包含algorithm头文件。
    在这里插入图片描述
void test2()
{
	vector<int> v;
	v.push_back(10);
	v.push_back(20);
	v.push_back(30);
	v.push_back(40);
	v.push_back(50);
	vector<int>::iterator pos = find(v.begin(), v.end(), 30);
	//auto pos = find(v.begin(), v.end(), 30);
	if (pos != v.end())
	{
		cout << "找到了" << endl;
		cout << pos - v.begin() << endl;
	}
	else
	{
		cout << "没找到" << endl;
	}

}

在这里插入图片描述

  • insert和erase
void test_vector8()
{
	// 使用列表方式初始化,C++11新语法
	vector<int> v{ 1, 2, 3, 4 };
	// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
	// 1. 先使用find查找3所在位置
	// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
	auto pos = find(v.begin(), v.end(), 3);
	if (pos != v.end())
	{
		// 2. 在pos位置之前插入30
		v.insert(pos, 30);
	}
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据
	v.erase(pos);
	it = v.begin();
	while (it != v.end()) {
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

在这里插入图片描述

  • swap
    交换两个vector类对象的值。
void test_vector9()
{
	vector<int> v{ 1, 2, 3, 4 };
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;
	vector<int> swapv;
	swapv.swap(v);
	cout << "v data:";
	for (size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;
	cout << "swapv data:";
	for (auto e : swapv)
	{
		cout << e << " ";
	}
	cout << endl;
}

在这里插入图片描述

六、迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

vector可能引起迭代器失效操作:

  • 1.会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等。
#include<iostream>
#include<vector>
using namespace std;
int main()
{
	vector<int> v{ 1,2,3,4,5,6 };
	auto it = v.begin();
	// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
	//v.resize(100, 8);
	// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
	//v.reserve(100);
	// 插入元素期间,可能会引起扩容,而导致原空间被释放
	//v.insert(v.begin(), 0);
	//v.push_back(8);
	// 给vector重新赋值,可能会引起底层容量改变
	v.assign(100, 8);
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}

在这里插入图片描述

出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
在这里插入图片描述
在这里插入图片描述

解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。

it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

在这里插入图片描述

  • 2.指定位置元素的删除操作–erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{
	int a[] = { 1, 2, 3, 4 };
	vector<int> v(a, a + sizeof(a) / sizeof(int));
	// 使用find查找3所在位置的iterator
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据,导致pos迭代器失效。
	v.erase(pos);
	cout << *pos << endl; // 此处会导致非法访问
	return 0;
}

在这里插入图片描述

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
在这里插入图片描述

  • 3.Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端
#include<iostream>
#include<vector>
using namespace std;
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{
	vector<int> v{1,2,3,4,5};
	for(size_t i = 0; i < v.size(); ++i)
		cout << v[i] << " ";
	cout << endl;
	auto it = v.begin();
	cout << "扩容之前,vector的容量为: " << v.capacity() << endl;
	// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效
	v.reserve(100);
	cout << "扩容之后,vector的容量为: " << v.capacity() << endl;
	// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会
	// 虽然可能运行,但是输出的结果是不对的
	while(it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
	return 0;
}

在这里插入图片描述

// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include<iostream>
#include <vector>
#include <algorithm>
using namespace std;
int main()
{
	vector<int> v{1,2,3,4,5};
	vector<int>::iterator it = find(v.begin(), v.end(), 3);
	v.erase(it);
	return 0;
}

在这里插入图片描述

// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
#include<iostream>
#include<vector>
using namespace std;
int main()
{
	vector<int> v{1,2,3,4,5};
	// vector<int> v{1,2,3,4,5,6};
	auto it = v.begin();
	while(it != v.end())
	{
		if(*it % 2 == 0)
		v.erase(it);
		++it;
	}
	for(auto e : v)
	cout << e << " ";
	cout << endl;
	return 0;
}

在这里插入图片描述

从上述三个例子中可以看到:SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。

  • 4.与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#include<iostream>
#include <string>
using namespace std;
void TestString()
{
	string s("hello");
	auto it = s.begin();
	// 放开之后代码会崩溃,因为resize到20会string会进行扩容
	// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了
	// 后序打印时,再访问it指向的空间程序就会崩溃
	//s.resize(20, '!');
	while (it != s.end())
	{
		cout << *it;
		++it;
	}
	cout << endl;
	it = s.begin();
	while (it != s.end())
	{
		it = s.erase(it);
		// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后
		// it位置的迭代器就失效了
		// s.erase(it);
		++it;
	}
}
int main()
{
	TestString();
	return 0;
}

在这里插入图片描述
迭代器失效解决办法:在使用前,对迭代器重新赋值即可,或者尽量避免使用传参给resize、reserve、insert、assign、push_back等迭代器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/341837.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Git】如何修改本地仓库的用户名和邮箱

最近我修改了我gitee和github的用户名还有邮箱&#xff0c;所以需要对本地仓库配置的用户名和邮箱进行更改 本文首发于 慕雪的寒舍 1.命令 刚开始我使用的是如下命令 git config --global user.email "邮箱" git config --global user.name "用户名"但是…

机器学习基础总结

一&#xff0c;机器学习系统分类 机器学习系统分为三个类别&#xff0c;如下图所示: 二&#xff0c;如何处理数据中的缺失值 可以分为以下 2 种情况&#xff1a; 缺失值较多&#xff1a;直接舍弃该列特征&#xff0c;否则可能会带来较大噪声&#xff0c;从而对结果造成不良影…

【云原生】promehtheus整合grafana实现可视化监控实战

文章目录前言一. 实验环境二. 安装grafana2.1 grafana的介绍2.2 为什么选择grafana&#xff1f;2.3 grafana下载及安装三. 网页端配置grafana3.1 浏览器访问grafana网页3.2 使用grafana 获取prometheus的数据源3.3 grafana导入prometheus模板总结前言 大家好&#xff0c;又见面…

新出海品牌必看!Colorkey如何构建海外第二增长曲线 ?

根据中商产业研究院数据&#xff0c;2022年1-6月中国美容化妆品及洗护用品出口量484138吨&#xff0c;同比增长8.6%&#xff0c;并且在2022年下半年依然保持强劲的增长。国货美妆品牌出海成为大趋势&#xff0c;各大品牌都纷纷开始出海&#xff0c;寻找新的增长点。Colorkey珂拉…

第二部分:并列句

想要表达一件事&#xff0c;一个简单句即可&#xff0c;一主一谓&#xff0c;n. v. 那&#xff0c;想要表达两件事&#xff0c;就写两个简单句呗&#xff0c;以此类推&#xff0c;想要描述几件事&#xff0c;就写几个简单句就行 英语是形合语言&#xff0c;形式上需要加上连接…

tomcat:设计模式用的好,下班就能早

tomcat作为一款经典的轻量级应用服务器&#xff0c;自然也使用了很多优雅的设计模式。 今天给大家简单介绍一下tomcat在初始化组件时使用的几种设计模式。 组合模式 在tomcat中&#xff0c;把不同的功能设计为了不同的组件&#xff0c;比如connector、engine、host、context等…

推荐五款实用的良心软件,无广告无弹窗

分享是一种神奇的东西,它使快乐增大,它使悲伤减小。 1.拼音输入法——手心输入法 如果你曾被输入法软件的弹屏骚扰&#xff0c;如果你仅需纯粹输入法不需要冗余功能&#xff0c;手心输入法将是你最好的选择&#xff0c;界面清爽简洁&#xff0c;无广告&#xff0c;精准的预测输…

CSI Tool 安装及配置记录

一、Ubuntu安装 1.下载Ubuntu 首先安装Ubuntu 14.04 LTS 64位下载地址&#xff08;页面中第一个链接&#xff09; 2.制作启动盘&#xff08;注意备份&#xff09; 可以使用官方的工具Rufus&#xff0c;下载地址&#xff1a;https://rufus.ie/ 打开Rufus&#xff0c;先备份…

wav转mp3,wav转换成mp3教程

很多使用音频文件的小伙伴&#xff0c;总会接触到不同类型的音频格式&#xff0c;根据需求不同需要做相关的处理。比如有人接触到了wav格式的音频&#xff0c;这是windows系统研发的一种标准数字音频文件&#xff0c;是一种占用磁盘体积超级大的音频格式&#xff0c;通常用于录…

超级好用的json格式化工具

理想的json格式化工具应该具备什么&#xff1f;你心中的json格式化工具是什么&#xff1f; Json.cn? No No No, 这个已经老掉牙了理想的json格式化工具应该支持搜索、定位、非法json容错&#xff0c;若实在无法格式化则应该给出具体的错误位置&#xff0c;并且可视区要大&…

【C++设计模式】学习笔记(3):策略模式 Strategy

目录 简介动机(Motivation)模式定义结构(Structure)要点总结笔记结语简介 Hello! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~ ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金…

数组的操作

1.splice 1.splice 是数组的一个方法&#xff0c;使用这个方法会改变原来的数组结构&#xff0c;splice&#xff08;index &#xff0c;howmany &#xff0c; itemX&#xff09;&#xff1b;这个方法接受三个参数&#xff0c;我们在使用的时候可根据自己的情况传递一个参数&…

ChatGPT原理简明笔记

学习笔记&#xff0c;以李宏毅的视频讲解为主&#xff0c;chatGPT的官方博客作为补充。 自己在上古时期接触过人工智能相关技术&#xff0c;现在作为一个乐子来玩&#xff0c;错漏之处在所难免。 若有错误&#xff0c;欢迎各位神仙批评指正。 chatGPT的训练分为四个阶段&#x…

大数据技术原理与应用

一、大数据概述 1.1大数据时代 三次信息化浪潮 1.2大数据的概念和影响 大数据的4v特征 volume大量化、velocity快速化、variety多样化、value价值化 数据量大数据类型繁多 – 大数据是由结构化和非结构化数据组成的处理速度快价值密度低&#xff0c;商业价值高 – 连续不间…

二十种题型带你复习《概率论与数理统计》得高分(高数叔)

题型一 事件及概率的运算 知识点 注意&#xff1a; 1 互斥与对立事件 2 事件的差 注意&#xff1a; 1 德摩根律注意&#xff1a; 1 加法公式 2 减法公式(事件的差)题目 注意&#xff1a; 1 填空题注意&#xff1a; 1 德摩根律 2 三个事件的和的公式 3 两个事件的积事件为…

数据库关系模型

关系模型简述 形象地说&#xff0c;一个关系就是一个table。 关系模型就是处理table的&#xff0c;它由三个部分组成&#xff1a; 描述DB各种数据的基本结构形式&#xff1b;描述table与table之间所可能发生的各种操作&#xff1b;描述这些操作所应遵循的约束条件&#xff1…

你是真的“C”——详解指针知识

你是真的“C”——详解指针知识&#x1f60e;前言&#x1f64c;1、 指针是什么&#xff1f;&#x1f64c;2、指针和指针类型&#x1f64c;2 、1指针-整数2 、 2指针的解引用3、 野指针&#x1f64c;3、 1野指针成因3、 2如何规避野指针4、指针运算&#x1f64c;4、1 指针-整数4…

Flutter WebView 性能优化,让 h5 像原生页面一样优秀

大家好&#xff0c;我是 17。 WebView 的文章分两篇 在 Flutter 中使用 webview_flutter 4.0 | js 交互Flutter WebView 性能优化&#xff0c;让 h5 像原生页面一样优秀 本篇和大家一起讨论下性能优化的问题。 WebView 页面的体验上之所以不如原生页面&#xff0c;主要是因…

c#数据结构-有序列表和有序字典

有序列表和有序字典 有序列表和有序字典都是是一个键值对容器&#xff0c;像字典一样。 从习惯和描述推测&#xff0c; 列表控制一个数组有序列表使用比有序字典更少的内存如果一次性添加一堆数据&#xff0c;且这堆数据有序。那么有序列表比有序字典更快 有序列表大概长这样 …

最后一个单词的长度-力扣58-java

一、题目描述给你一个字符串 s&#xff0c;由若干单词组成&#xff0c;单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。示例 1&#xff1a;输入&#xff1a;s "Hello World"输出&#x…