“深度学习”学习日记。卷积神经网络--用CNN的实现MINIST识别任务

news2025/1/6 20:47:49

2023.2.11

通过已经实现的卷积层和池化层,搭建CNN去实现MNIST数据集的识别任务;

一,简单CNN的网络构成:

代码需要在有网络的情况下运行,因为会下载MINIST数据集,运行后会生成params.pkl保留训练权重;

简单卷积层的基本参数:

"""简单的ConvNet

conv - relu - pool - affine - relu - affine - softmax

Parameters
----------
input_size : 输入大小(MNIST的情况下为784)
hidden_size_list : 隐藏层的神经元数量的列表(e.g. [100, 100, 100])
output_size : 输出大小(MNIST的情况下为10)
activation : 'relu' or 'sigmoid'
weight_init_std : 指定权重的标准差(e.g. 0.01)
    指定'relu'或'he'的情况下设定“He的初始值”
    指定'sigmoid'或'xavier'的情况下设定“Xavier的初始值”
"""

一开始时,这里的超参数通过命名为conv_param的字典传入,他会像{'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},这样,保存必要的超参数。

在初始化权重前,这里将由初始化参数传入卷积层的超参数从字典中取出,然后计算卷积层的输出大小,再进行参数初始化

在生成层,学习所需要的参数是第一层卷积层和剩余两个全连接层的权值和偏置,将这些参数保存在实例变量的字典中,将第一层卷积层的权重设为w1,偏置设为b1。

在全连接层,从前面开始按顺序像有序字典(Orderdict)的Layers中添加层。只有最后的SoftmaxWithLoss层被添加到变得变量lastlayers。

以上就是简单卷积神经网络(SimpleConvnet)的初始化中进行的处理。像这样初始化,进行推理处理和求损失函数loss

用误差反向传播法传递参数的梯度,最后把各个权重参数的梯度保存到grads字典中,通过正向传播和反向传播组装在一起,完成简单卷积神经网络的实现;

简单卷积层的代码:

class SimpleConvNet:
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))


        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()
#全连接层
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        """求损失函数
        参数x是输入数据、t是教师标签
        """
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1 : t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i*batch_size:(i+1)*batch_size]
            tt = t[i*batch_size:(i+1)*batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        """求梯度(数值微分)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        """求梯度(误差反向传播法)

        Parameters
        ----------
        x : 输入数据
        t : 教师标签

        Returns
        -------
        具有各层的梯度的字典变量
            grads['W1']、grads['W2']、...是各层的权重
            grads['b1']、grads['b2']、...是各层的偏置
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i+1)]
            self.layers[key].b = self.params['b' + str(i+1)]

实验正确率对比: 

 使用MINIST数据集训练SimpleConvnet,可以对比以前文章没有使用“卷积”神经网络的MINIST识别任务的正确率:这是一个一步步完善的过程

“深度学习”学习日记。神经网络的推理处理_Anthony陪你度过漫长岁月的博客-CSDN博客

“深度学习”学习日记。神经网络的学习。--学习算法的实现_Anthony陪你度过漫长岁月的博客-CSDN博客

“深度学习”学习日记。误差反向传播法--算法实现_Anthony陪你度过漫长岁月的博客-CSDN博客

 卷积神经网络可以有效的读取图像的某种特征而调整参数权重,测试集的识别率为:0.987,对于小型神经网络这个正确率不错了,接下来通过叠加层来加深神经网络,提高正确率。

实验代码1: 

可以减少测试数据节省时间:同时也会降低正确率

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据 
# x_train, t_train = x_train[:5000], t_train[:5000]
# x_test, t_test = x_test[:1000], t_test[:1000]
import sys, os

sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
from collections import OrderedDict
import matplotlib.pyplot as plt

try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np

url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img': 'train-images-idx3-ubyte.gz',
    'train_label': 'train-labels-idx1-ubyte.gz',
    'test_img': 't10k-images-idx3-ubyte.gz',
    'test_label': 't10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = dataset_dir + "/" + file_name

    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")


def download_mnist():
    for v in key_file.values():
        _download(v)


def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")

    return labels


def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")

    return data


def _convert_numpy():
    dataset = {}
    dataset['train_img'] = _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])

    return dataset


def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")


def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1

    return T


def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    if not os.path.exists(save_file):
        init_mnist()

    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)

    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])

    if not flatten:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])


if __name__ == '__main__':
    init_mnist()


class SGD:
    def __init__(self, lr=0.01):
        self.lr = lr

    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key]


class Momentum:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None

    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)

        for key in params.keys():
            self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
            params[key] += self.v[key]


class Nesterov:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None

    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)

        for key in params.keys():
            self.v[key] *= self.momentum
            self.v[key] -= self.lr * grads[key]
            params[key] += self.momentum * self.momentum * self.v[key]
            params[key] -= (1 + self.momentum) * self.lr * grads[key]


class AdaGrad:
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None

    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)

        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)


class RMSprop:
    def __init__(self, lr=0.01, decay_rate=0.99):
        self.lr = lr
        self.decay_rate = decay_rate
        self.h = None

    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)

        for key in params.keys():
            self.h[key] *= self.decay_rate
            self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)


class Adam:
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None

    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)

        self.iter += 1
        lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)

        for key in params.keys():
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])

            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)


def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)  # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))


class Affine:
    def __init__(self, W, b):
        self.W = W
        self.b = b

        self.x = None
        self.original_x_shape = None
        self.dW = None
        self.db = None

    def forward(self, x):
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x

        out = np.dot(self.x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)
        return dx


class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None
        self.t = None

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size:
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size

        return dx


class Relu:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0

        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


def numerical_gradient(f, x):
    h = 1e-4
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()

    return grad


def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_data.shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1

    img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)
    return col


def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1
    col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)

    img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))
    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]


class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad

        self.x = None
        self.col = None
        self.col_W = None

        self.dW = None
        self.db = None

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = 1 + int((H + 2 * self.pad - FH) / self.stride)
        out_w = 1 + int((W + 2 * self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W

        return out

    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0, 2, 3, 1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)

        return dx


class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad

        self.x = None
        self.arg_max = None

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h * self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)

        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,))

        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)

        return dx


class SimpleConvNet:
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param['filter_num']
        filter_size = conv_param['filter_size']
        filter_pad = conv_param['pad']
        filter_stride = conv_param['stride']
        input_size = input_dim[1]
        conv_output_size = (input_size - filter_size + 2 * filter_pad) / filter_stride + 1
        pool_output_size = int(filter_num * (conv_output_size / 2) * (conv_output_size / 2))

        self.params = {}
        self.params['W1'] = weight_init_std * \
                            np.random.randn(filter_num, input_dim[0], filter_size, filter_size)
        self.params['b1'] = np.zeros(filter_num)
        self.params['W2'] = weight_init_std * \
                            np.random.randn(pool_output_size, hidden_size)
        self.params['b2'] = np.zeros(hidden_size)
        self.params['W3'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b3'] = np.zeros(output_size)

        self.layers = OrderedDict()
        self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],
                                           conv_param['stride'], conv_param['pad'])
        self.layers['Relu1'] = Relu()
        self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2)
        self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2'])
        self.layers['Relu2'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)

        return x

    def loss(self, x, t):
        y = self.predict(x)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1: t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i * batch_size:(i + 1) * batch_size]
            tt = t[i * batch_size:(i + 1) * batch_size]
            y = self.predict(tx)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    def numerical_gradient(self, x, t):
        loss_w = lambda w: self.loss(x, t)

        grads = {}
        for idx in (1, 2, 3):
            grads['W' + str(idx)] = numerical_gradient(loss_w, self.params['W' + str(idx)])
            grads['b' + str(idx)] = numerical_gradient(loss_w, self.params['b' + str(idx)])

        return grads

    def gradient(self, x, t):
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        grads = {}
        grads['W1'], grads['b1'] = self.layers['Conv1'].dW, self.layers['Conv1'].db
        grads['W2'], grads['b2'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W3'], grads['b3'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, key in enumerate(['Conv1', 'Affine1', 'Affine2']):
            self.layers[key].W = self.params['W' + str(i + 1)]
            self.layers[key].b = self.params['b' + str(i + 1)]


class Trainer:
    def __init__(self, network, x_train, t_train, x_test, t_test,
                 epochs=20, mini_batch_size=100,
                 optimizer='SGD', optimizer_param={'lr': 0.01},
                 evaluate_sample_num_per_epoch=None, verbose=True):
        self.network = network
        self.verbose = verbose
        self.x_train = x_train
        self.t_train = t_train
        self.x_test = x_test
        self.t_test = t_test
        self.epochs = epochs
        self.batch_size = mini_batch_size
        self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch

        optimizer_class_dict = {'sgd': SGD, 'momentum': Momentum, 'nesterov': Nesterov,
                                'adagrad': AdaGrad, 'rmsprpo': RMSprop, 'adam': Adam}
        self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)

        self.train_size = x_train.shape[0]
        self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
        self.max_iter = int(epochs * self.iter_per_epoch)
        self.current_iter = 0
        self.current_epoch = 0

        self.train_loss_list = []
        self.train_acc_list = []
        self.test_acc_list = []

    def train_step(self):
        batch_mask = np.random.choice(self.train_size, self.batch_size)
        x_batch = self.x_train[batch_mask]
        t_batch = self.t_train[batch_mask]

        grads = self.network.gradient(x_batch, t_batch)
        self.optimizer.update(self.network.params, grads)

        loss = self.network.loss(x_batch, t_batch)
        self.train_loss_list.append(loss)
        if self.verbose: print("train loss:" + str(loss))

        if self.current_iter % self.iter_per_epoch == 0:
            self.current_epoch += 1

            x_train_sample, t_train_sample = self.x_train, self.t_train
            x_test_sample, t_test_sample = self.x_test, self.t_test
            if not self.evaluate_sample_num_per_epoch is None:
                t = self.evaluate_sample_num_per_epoch
                x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
                x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]

            train_acc = self.network.accuracy(x_train_sample, t_train_sample)
            test_acc = self.network.accuracy(x_test_sample, t_test_sample)
            self.train_acc_list.append(train_acc)
            self.test_acc_list.append(test_acc)

            if self.verbose: print(
                "=== epoch:" + str(self.current_epoch) + ", train acc:" + str(train_acc) + ", test acc:" + str(
                    test_acc) + " ===")
        self.current_iter += 1

    def train(self):
        for i in range(self.max_iter):
            self.train_step()

        test_acc = self.network.accuracy(self.x_test, self.t_test)

        if self.verbose:
            print("=============== Final Test Accuracy ===============")
            print("test acc:" + str(test_acc))


(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

# 处理花费时间较长的情况下减少数据
x_train, t_train = x_train[:5000], t_train[:5000]
x_test, t_test = x_test[:1000], t_test[:1000]

max_epochs = 20

network = SimpleConvNet(input_dim=(1, 28, 28),
                        conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=max_epochs, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

network.save_params("params.pkl")
print("Saved Network Parameters!")

markers = {'train': 'o', 'test': 's'}
x = np.arange(max_epochs)
plt.plot(x, trainer.train_acc_list, marker='o', label='train', markevery=2)
plt.plot(x, trainer.test_acc_list, marker='s', label='test', markevery=2)
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

 二,CNN的可视化:

通过卷积层的可视化,来学习卷积层到底卷积了什么?(如何处理?)

1,第一层权重的可视化:

在简单卷积层的一个权重参数, conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},中可以知道学习前的权重是(30,1,5,5),这意味着卷积核的大小是5X5、通道数为1,表示卷积核可以可视化为1通道的灰色图像;

“cnn可视化”,实验代码2:写在实验代码1的末尾:

def filter_show(filters, nx=8, margin=3, scale=10):
    FN, C, FH, FW = filters.shape
    ny = int(np.ceil(FN / nx))

    fig = plt.figure()
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

    for i in range(FN):
        ax = fig.add_subplot(ny, nx, i+1, xticks=[], yticks=[])
        ax.imshow(filters[i, 0], cmap=plt.cm.gray_r, interpolation='nearest')
    plt.show()


network = SimpleConvNet()
# 随机进行初始化后的权重
filter_show(network.params['W1'])

# 学习后的权重
network.load_params("params.pkl")
filter_show(network.params['W1'])

运行结果:学习前的卷积核随机初始化,这样的图像在黑白分布上没有规律可以寻找;

 学习后,卷积核被更新成了有规律的图像,含有块状区域(blob)

 学习前和学习后,虽然权重元素都是实数,但是,在图像的显示上,统一将最小值显示称为黑色,最大值为白色;这好像卷积核在观察着什么东西观察边沿(颜色变化的分界线)和斑块(局部的块状区域)等,现在就研究一下这个问题。

实验代码:写在实验代码1的末尾:

注意图片的输入路径:

代码来源于教材,作者能力问题,无法使用任意图片进行实验,会附上教材的图片。

                                                                                                                        2023.2.11

命名为lena_gray。

def filter_show(filters, nx=4, show_num=16):
    FN, C, FH, FW = filters.shape
    ny = int(np.ceil(show_num / nx))

    fig = plt.figure()
    fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05)

    for i in range(show_num):
        ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
        ax.imshow(filters[i, 0], cmap=plt.cm.gray_r, interpolation='nearest')


network = SimpleConvNet(input_dim=(1, 28, 28),
                        conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                        hidden_size=100, output_size=10, weight_init_std=0.01)

# 学习后的权重
network.load_params("params.pkl")

filter_show(network.params['W1'], 16)

img = imread('../dataset/lena_gray.png')
img = img.reshape(1, 1, *img.shape)

fig = plt.figure()

w_idx = 1

for i in range(16):
    w = network.params['W1'][i]
    b = 0  # network.params['b1'][i]

    w = w.reshape(1, *w.shape)
    # b = b.reshape(1, *b.shape)
    conv_layer = Convolution(w, b)
    out = conv_layer.forward(img)
    out = out.reshape(out.shape[2], out.shape[3])

    ax = fig.add_subplot(4, 4, i + 1, xticks=[], yticks=[])
    ax.imshow(out, cmap=plt.cm.gray_r, interpolation='nearest')

plt.show()

观察实验结果:

可以观察到figure1对水平方向上的边缘有反应的卷积核:在figure2垂直方向的边缘上有白色像素;figure2对垂直方向上的边缘有反应的卷积核:在figure2水平方向的边缘上有白色像素;

 由此得知,卷积层的卷积核会提取边缘或斑块等的原始信息,而刚才是实现的CNN会将这些原始信息传递给后面的层。

2,基于分层结构的信息提取:

像边缘、斑块这样的信息称为低级信息,在只有一层卷积层的CNN被提取,如果在叠加了多层的CNN中,各层中优惠提取什么样的信息呢?

根据深度学习的可视化相关研究,随着层次的加深,提取的信息(反应强烈的神经元)也会缘来缘抽象。最开始是对简单的边缘有相应,接下来的层对纹理有反应,再后面的层会对更加复杂的物体部件有反应。也就是说,随着层次的加深,神经元从简单的形状向“高级”信息变化

 三、具有代表性的CNN:

迄今为止,已经提出了各种网络结构。有两个网络非常具有代表性;

1,LeNet:

LeNet在1988年首次被提出,用于完成MNIST识别任务。

特点:

1,“抽选元素”的子采样层(也是跟CNN一样的连续的卷积层和池化层);

2,LeNet的激活函数使用sigmoid函数,而现在的CNN使用ReLU函数;

3.原始的LeNet中使用子采样(subsampling)缩小空间中的各个数据的大小,而现在的CNN中Max池化是主流操作;

LeNet结构图:

2,AlexNet: 

AlexNet是引发深度学习热潮的导火线,他的结构与LeNet基本上没有区别,AlexNet叠有多个卷积层和池化层,最后由全连接层输出结果。

特点:

1,激活函数使用ReLU函数;

2,使用进行局部正规化的LRN(Local Response Noramlization)

3,使用Droput

关于Droput可以参考:“深度学习”学习日记。与学习有关的技巧--正则化_Anthony陪你度过漫长岁月的博客-CSDN博客权值衰减,https://blog.csdn.net/m0_72675651/article/details/128786693

大多数情况下深度学习(加深层次)的网络存在大量参数。因此,学习需要大量的计算,并且需要时那些参数“配对”的大量数据。现在大多数人都可以获得大量的数据和高性能GPU的普及,他们成为深度学习发展的原动力

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/338793.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【吉先生的Java全栈之路】

吉士先生Java全栈学习路线&#x1f9e1;第一阶段Java基础: 在第一阶段:我们要认真听讲,因为基础很重要!基础很重要!基础很重要!!! 重要的事情说三遍。在这里我们先学JavaSE路线&#xff1b;学完之后我们要去学第一个可视化组件编程《GUI》&#xff1b;然后写个《贪吃蛇》游戏耍…

微搭低代码从入门到精通05-变量定义

我们上一篇对应用编辑器有了一个整体的介绍。要想零基础开发小程序&#xff0c;就得从各种概念开始学起。 如果你是零基础学习开发&#xff0c;无论学习哪一门语言&#xff0c;第一个需要掌握的知识点就是变量。 那么什么是变量&#xff1f;变量其实就是存放数据的一个容器&a…

专题 | 防抖和节流

一 防抖&#xff1a;单位时间内&#xff0c;频繁触发事件&#xff0c;只执行最后一次 场景&#xff1a;搜索框搜索输入&#xff08;利用定时器&#xff0c;每次触发先清掉以前的定时器&#xff0c;从新开始&#xff09; 节流&#xff1a;单位时间内&#xff0c;频繁触发事件&…

Yii2模板:自定义头部脚部文件,去掉头部脚部文件

一、yii安装完成之后&#xff0c;运行结果如下图二、如何自定义头部脚部文件呢0、默认展示1、在类里定义&#xff0c;在整个类中生效2、在方法中定义&#xff0c;在当前方法中生效3、home模板介绍三、去掉头部脚部文件1、控制 $layout 的值2、把action中的render改为renderPart…

前端对于深拷贝和浅拷贝的应用和思考

浅拷贝 浅拷贝 &#xff1a; 浅拷贝是指对基本类型的值拷贝&#xff0c;以及对对象类型的地址拷贝。它是将数据中所有的数据引用下来&#xff0c;依旧指向同一个存放地址&#xff0c;拷贝之后的数据修改之后&#xff0c;也会影响到原数据的中的对象数据。最简单直接的浅拷贝就…

java ssm集装箱码头TOS系统调度模块的设计与实现

由于历史和经济体制的原因&#xff0c;国内码头物流企业依然保持大而全的经营模式。企业自己建码头、场地、经营集装箱运输车辆。不过近几年来随着经济改革的进一步深入和竞争的激烈&#xff0c;一些大型的码头物流企业逐步打破以前的经营模式&#xff0c;其中最明显的特征就是…

利用机器学习(mediapipe)进行人脸468点的3D坐标检测--视频实时检测

上期文章,我们分享了人脸468点的3D坐标检测的图片检测代码实现过程,我们我们介绍一下如何在实时视频中,进行人脸468点的坐标检测。 import cv2 import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_fac…

ubuntu 驱动更新后导致无法进入界面

**问题描述&#xff1a; **安装新ubuntu系统后未禁止驱动更新导致无法进入登录界面。 解决办法&#xff1a; 首先在进入BIOS中&#xff0c;修改设置以进行命令行操作&#xff0c;然后卸载已有的系统驱动&#xff0c;最后安装新的驱动即可。 开机按F11进入启动菜单栏&#xf…

【JavaScript 逆向】安居客滑块逆向分析

声明本文章中所有内容仅供学习交流&#xff0c;相关链接做了脱敏处理&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01;案例目标验证码&#xff1a;aHR0cHM6Ly93d3cuYW5qdWtlLmNvbS9jYXB0Y2hhLXZlcmlmeS8/Y2FsbGJhY2s9c2hpZWxkJmZyb209YW50aXNwYW0以上均做了脱敏处…

如何准备大学生电子设计竞赛

大学生电子设计竞赛难度中上&#xff0c;一般有好几个类型题目可以选择&#xff0c;参赛者可以根据自己团队的能力、优势去选择合适自己的题目&#xff0c;灵活自主空间较大。参赛的同学们可以在暑假好好学习相关内容&#xff0c;把往年的题目拿来练练手。这个比赛含金量还是有…

数据可视化,流程化处理pycharts-

本文直接进入可视化&#xff0c;输入讲解输入列表生成图片&#xff0c;关于pandas操作看这篇pandas matplotlib 导包后使用 import matplotlib.pyplot as plt饼图 使用 plt.figure 函数设置图片的大小为 15x15 使用 plt.pie 函数绘制饼图&#xff0c;并设置相关的参数&…

详细的从零部署ChatGPT

chatgpt产品机遇: 1. chatgpt 所带来的机遇&#xff1a; 下一代 AI 搜索引擎&#xff0c;解决目前搜索引擎结果多样复杂、需要人工判断准确定的问题&#xff1b;替代低端劳动岗位、释放部分脑力活动、即将变革多个行业 &#xff1b; 2. chatgpt 我分析将带来多个新的工作岗位机…

【Opencv实战】想给图片去水印?这样操作,几百张图片1分钟无痕去水印,这款去水印神器终于被我找到啦~(超厉害的)

前言 &#x1f680; 作者 &#xff1a;“程序员梨子” &#x1f680; **文章简介 **&#xff1a;本篇文章主要是写了opencv的人脸检测、猫脸检测小程序。 &#x1f680; **文章源码免费获取 &#xff1a; 为了感谢每一个关注我的小可爱&#x1f493;每篇文章的项目源码都是无…

REDIS-持久化方案

我们知道redis是内存数据库&#xff0c;它的数据是存储在内存中的&#xff0c;我们知道内存的一个特点是断电数据就丢失&#xff0c;所以redis提供了持久化功能&#xff0c;可以将内存中的数据状态存储到磁盘里面&#xff0c;避免数据丢失。 Redis持久化有三种方案&#xff0c;…

【Node.js】 创建web服务器

Node.js什么是客户端&#xff0c;什么是服务器服务器和普通电脑的区别什么是http模块导入http模块服务器相关概念创建web服务器的基本步骤req请求对象req响应对象解决中文乱码根据不同的url响应不同的html内容什么是客户端&#xff0c;什么是服务器 客户端在网络节点中&#x…

CentOS7 配置共享文件夹

1、SSH连接CentOS&#xff0c;使用“rpm -qi samba"命令查询是否已经安装了Samba&#xff0c;如果没有安装&#xff0c;使用“yum install samba”命令&#xff0c;下载Samba包并安装&#xff0c;输入“y”&#xff0c;确认安装软件和软件依赖包。 2、使用“rpm -qa | gr…

kubernetes -- 核心组件介绍以及组件的运行流程

常用组件大白话说 如果想要官方的&#xff0c;详细的信息&#xff0c;请看官方文档。 https://kubernetes.io/zh-cn/docs/concepts/overview/components/ 现在介绍一些核心的概念&#xff1a; etcd&#xff1a;存储所有节点的信息&#xff0c;节点上部署的容器信息等都存在数…

SWIG妙用: MATLAB程序转python和Java库

1.引言Python或Java调用MATLAB程序需要安装MATLAB官方提供的支持库&#xff08;MATLAB Runtime&#xff09;&#xff0c;而且适配的python或JDK版本有限&#xff0c;不方便移植。本文的思路是用MATLAB Coder将MATLAB源程序转为C/C代码&#xff0c;然后用swig将其打包成python 动…

Spring Cloud Alibaba Sentinel 动态规则扩展

前言 到目前为止&#xff0c;我们的规则定义是这样的&#xff1a; PostConstructpublic void initRole(){List<FlowRule> rules new ArrayList<>(1);FlowRule rule new FlowRule();// 设置规则匹配的资源名称rule.setResource("myFlowResource");// 规…

基于云原生分布式存储ceph实现k8s数据持久化

文章目录1、初始化集群1.1 集群机器配置1.2 配置主机名1.3 配置hosts文件1.4、配置互信1.5、关闭防火墙1.6、关闭selinux1.7、配置Ceph安装源1.8、配置时间同步1.9、安装基础软件包2、安装ceph集群2.1 安装ceph-deploy2.2 创建monitor节点2.3 安装ceph-monitor2.4 部署osd服务2…