目录
一、概念
二、红黑树的插入操作
第一步: 按照二叉搜索树的规则插入新节点
第二步: 插入后检测性质是否造到破坏,若遭到破坏则进行调整
情况一: cur为红,parent为红,grandfather为黑,uncle存在且为红
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋+变色)
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋+变色)
三、红黑树的验证
检测其是否满足二叉搜索树
检测其是否满足红黑树的性质
四、完整代码
五、红黑树与AVL树的比较
一、概念
红黑树,是一种二叉搜索树。但在每个结点上增加一个存储位表示结点的颜色,可以是Red或
Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路
径会比其他路径长出两倍,因而是接近平衡的。
性质:
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 若一个节点是红色的,则它的两个孩子结点是黑色的(即树中没有连续的红色结点)
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(即每条路径上黑色结点数量相等)
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点NIF)
二、红黑树的插入操作
红黑树的插入操作大致可以分成两步:
第一步: 按照二叉搜索树的规则插入新节点
bool insert(const pair<K, V>& kv) {
if (_root == nullptr) {
_root = new TreeNode(kv);
_root->_color = BLACK;
return true;
}
TreeNode* parent = nullptr;
TreeNode* cur = _root;
while (cur != nullptr) {
if (kv.first > cur->_data.first) {
parent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_data.first) {
parent = cur;
cur = cur->_left;
}
else return false;
}
cur = new TreeNode(kv);
cur->_color = RED;
if (kv.first > parent->_data.first) {
parent->_right = cur;
}
else { //kv.first < parent->_data.first)
parent->_left = cur;
}
cur->_parent = parent;
//………………
}
第二步: 插入后检测性质是否造到破坏,若遭到破坏则进行调整
新节点的默认颜色是红色,若其双亲结点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入结点的双亲结点颜色为红色时,就出现了连续的红色结点,此时需要对红黑树分情况来讨论:
情况一: cur为红,parent为红,grandfather为黑,uncle存在且为红
if (uncle != nullptr && uncle->_color == RED) {
parent->_color = uncle->_color = BLACK;
grandfather->_color = RED;
cur = grandfather;
parent = cur->_parent;
}
情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑(单旋+变色)
uncle的情况有两种:
1.若uncle结点不存在时,cur结点一定是新增结点。若cur不是新增结点,则cur和parent之间一定有一个黑色结点。这不满足性质4:每条路径上黑色结点的个数相同。
2.若uncle存在且为黑色,那么cur原来的颜色一定为黑色。看到cur结点是红色,是因为cur的子树在调整的过程中将cur的颜色从黑色改变为红色。
//右单旋 + 变色
if (cur == parent->_left) {
rotate_right(grandfather);
grandfather->_color = RED;
parent->_color = BLACK;
}
//左单旋 + 变色
if (cur == parent->_right) {
rotate_left(grandfather);
grandfather->_color = RED;
parent->_color = BLACK;
}
情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑(双旋+变色)
//左右双旋 + 变色
else {//cur == parent->_right
rotate_left(parent);
rotate_right(grandfather);
cur->_color = BLACK;
grandfather->_color = RED;
}
//右左双旋 + 变色
else {//cur == parent->_left
rotate_right(parent);
rotate_left(grandfather);
cur->_color = BLACK;
grandfather->_color = RED;
}
三、红黑树的验证
红黑树的检测分为两步:
检测其是否满足二叉搜索树
使用中序遍历判断其是否有序即可,这里不做过多解释
检测其是否满足红黑树的性质
bool IsBalance() {
//空树也是红黑树
if (_root == nullptr) return true;
//根结点是黑色的
if (_root->_color != BLACK) return false;
int benchmark = 0;//基准值
return _IsBalance(_root, 0, benchmark);
}
bool _IsBalance(TreeNode* root, int blackNum, int& benchmark) {
if (root == nullptr) {
if (benchmark == 0) {
benchmark = blackNum;//将第一条路径的blackNum设为基准值
return true;
}
else {
return blackNum == benchmark;
}
}
if (root->_color == BLACK) ++blackNum;
if (root->_color == RED && root->_parent->_color == RED) return false;
//逻辑短路,若root结点为红色,其就不可能为根结点,一定有parent结点
return _IsBalance(root->_left, blackNum, benchmark) &&
_IsBalance(root->_right, blackNum, benchmark);
}
四、完整代码
#include<iostream>
#include<cassert>
using std::pair;
using std::make_pair;
using std::cout;
using std::cout;
using std::endl;
enum Color { RED,BLACK };
template<class K,class V>
struct RedBlackTreeNode {
RedBlackTreeNode(const pair<K, V>& kv) :
_parent(nullptr),
_left(nullptr),
_right(nullptr),
_data(kv),
_color(RED){}
RedBlackTreeNode<K, V>* _parent;
RedBlackTreeNode<K, V>* _left;
RedBlackTreeNode<K, V>* _right;
pair<K, V> _data;
Color _color;
};
template<class K,class V>
class RedBlackTree
{
typedef RedBlackTreeNode<K, V> TreeNode;
public:
bool insert(const pair<K, V>& kv) {
if (_root == nullptr) {
_root = new TreeNode(kv);
_root->_color = BLACK;
return true;
}
TreeNode* parent = nullptr;
TreeNode* cur = _root;
while (cur != nullptr) {
if (kv.first > cur->_data.first) {
parent = cur;
cur = cur->_right;
}
else if (kv.first < cur->_data.first) {
parent = cur;
cur = cur->_left;
}
else return false;
}
cur = new TreeNode(kv);
cur->_color = RED;
if (kv.first > parent->_data.first) {
parent->_right = cur;
}
else { //kv.first < parent->_data.first)
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_color == RED)
{
TreeNode* grandfather = parent->_parent;
assert(grandfather != nullptr);
//当parent结点为红时,grandfather结点必不为空(根结点为黑)
assert(grandfather->_color == BLACK);
//当parent结点为红时,grandfather结点必为黑色(否则违反性质,出现连续的红色结点)
if (parent == grandfather->_left) {
TreeNode* uncle = grandfather->_right;
if (uncle != nullptr && uncle->_color == RED) {
parent->_color = uncle->_color = BLACK;
grandfather->_color = RED;
cur = grandfather;
parent = cur->_parent;
}
else {//uncle不存在或者为黑
//右单旋 + 变色
if (cur == parent->_left) {
rotate_right(grandfather);
grandfather->_color = RED;
parent->_color = BLACK;
}
//左右双旋 + 变色
else {//cur == parent->_right
rotate_left(parent);
rotate_right(grandfather);
cur->_color = BLACK;
grandfather->_color = RED;
}
break;
}
}
else {//parent == grandfather->_right
TreeNode* uncle = grandfather->_left;
if (uncle != nullptr && uncle->_color == RED) {
parent->_color = uncle->_color = BLACK;
grandfather->_color = RED;
cur = grandfather;
parent = cur->_parent;
}
else {//uncle不存在或者为黑
//左单旋 + 变色
if (cur == parent->_right) {
rotate_left(grandfather);
grandfather->_color = RED;
parent->_color = BLACK;
}
//右左双旋 + 变色
else {//cur == parent->_left
rotate_right(parent);
rotate_left(grandfather);
cur->_color = BLACK;
grandfather->_color = RED;
}
break;
}
}
}
_root->_color = BLACK;
return true;
}
void inorder() {
_inorder(_root);
}
bool IsBalance() {
//空树也是红黑树
if (_root == nullptr) return true;
//根结点是黑色的
if (_root->_color != BLACK) return false;
int benchmark = 0;//基准值
return _IsBalance(_root, 0, benchmark);
}
private:
void _inorder(TreeNode* root) {
if (root == nullptr) {
return;
}
_inorder(root->_left);
cout << root->_data.first << ":" << root->_data.second << " ";
_inorder(root->_right);
}
bool _IsBalance(TreeNode* root, int blackNum, int& benchmark) {
if (root == nullptr) {
if (benchmark == 0) {
benchmark = blackNum;
return true;
}
else {
return blackNum == benchmark;
}
}
if (root->_color == BLACK) ++blackNum;
if (root->_color == RED && root->_parent->_color == RED) return false;
//逻辑短路,若root结点为红色,其就不可能为根结点,一定有parent结点
return _IsBalance(root->_left, blackNum, benchmark) &&
_IsBalance(root->_right, blackNum, benchmark);
}
void rotate_left(TreeNode* parent) {
TreeNode* subR = parent->_right;
TreeNode* subRL = subR->_left;
TreeNode* pparent = parent->_parent;
parent->_right = subRL;
if (subRL != nullptr) subRL->_parent = parent;
subR->_left = parent;
parent->_parent = subR;
//解决根结点变换带来的问题
if (_root == parent) {
_root = subR;
subR->_parent = nullptr;
}
else {
if (pparent->_left == parent) pparent->_left = subR;
else pparent->_right = subR;
subR->_parent = pparent;
}
}
void rotate_right(TreeNode* parent) {
TreeNode* subL = parent->_left;
TreeNode* subLR = subL->_right;
TreeNode* pparent = parent->_parent;
parent->_left = subLR;
if (subLR != nullptr) subLR->_parent = parent;
subL->_right = parent;
parent->_parent = subL;
if (_root == parent) {
_root = subL;
subL->_parent = nullptr;
}
else {
if (pparent->_left == parent) pparent->_left = subL;
else pparent->_right = subL;
subL->_parent = pparent;
}
}
private:
TreeNode* _root = nullptr;
};
void RBTreeTest() {
size_t N = 10000;
srand((unsigned)time(NULL));
RedBlackTree<int, int> t;
for (size_t i = 0; i < N; ++i) {
int x = rand();
//cout << "insert:" << x << ":" << i << endl;
t.insert(make_pair(x, i));
}
t.inorder();
cout << t.IsBalance() << endl;
}
int main()
{
RBTreeTest();
return 0;
}
五、红黑树与AVL树的比较
与AVL树的平衡 (左右高度差不超过1) 相比,红黑树的平衡(没有一条路径会比其他路径长出两倍)并没有那么严格。所以两者在插入或删除相同数据时,红黑树需要旋转调整的次数更少,这使得红黑树的性能略高于AVL树。
可是AVL树更加平衡,查找数据所需的次数不是更加少吗?在AVL树与红黑树中进行数据的查找都十分快捷(譬如在查找100万数据中进行查找只需大概20次),对于CPU从时间上来说并不会造成什么负担。
总的来说,AVL树更适用于插入删除不频繁,只对查找要求较高的场景; 红黑树相较于AVL树更适应对插入、删除、查找要求都较高的场景,红黑树在实际中运用更加广泛。