利用Stream和OpenAI构建基于RAG的AI客服聊天机器人

news2025/4/22 11:24:04

利用Stream和OpenAI构建基于RAG的AI客服聊天机器人

尽管大语言模型经过海量数据训练,但其领域专业知识仍有限。这一局限使其在需要特定数据的客服聊天机器人等应用中表现欠佳。

检索增强生成(RAG)通过让大语言模型访问外部知识源来生成更精准的响应,有效解决了这一问题。借助RAG技术,您可以让大语言模型在生成过程中从知识库获取相关信息作为上下文,从而准确回答客户咨询,打造自动化客服系统。

请注意,RAG并非增强大语言模型能力的唯一方式。另一种方法是微调模型。但对于需要庞大外部知识库或数据频繁变更的场景(如客服系统),RAG显然更为适合。

本教程将指导您使用Stream、OpenAI的GPT-4和Supabase的pgvector构建基于RAG的智能客服聊天机器人。Stream为开发者提供强大支持,可轻松构建可扩展的嵌入式聊天、视频及动态流功能,其强大的API、SDK和AI集成方案能显著加速应用开发。

教程将涵盖以下内容:

  • 利用Supabase的pgvector功能,从我们的知识库创建并存储向量嵌入。pgvector提供了一种高效的方式来存储和查询向量嵌入。
    知识库是指作为有用上下文依赖的外部知识来源,供您的LLM使用。

  • 对客户的聊天内容进行嵌入处理,并在存储的知识库嵌入向量上进行相似性搜索。

  • 配置Stream并构建我们基于RAG技术的聊天机器人。

前提条件

要跟着做,你需要:

  • 一个免费的 Stream 账户。

  • 一个 OpenAI 账户。

  • 一个 Supabase 账户。

向量数据库设置

我们将首先使用Supabase搭建一个向量数据库,用于存储向量嵌入并执行相似性搜索。本教程将以Stream的React文档作为知识库。

进入Supabase的SQL编辑器,我们将依次执行以下操作:启用pgvector扩展、创建向量表,并编写一个能在知识库上执行相似性搜索的函数。

-- Enable pgvector
create extension if not exists vector;

-- Create documents table
create table if not exists documents (
    id bigserial primary KEY,
    content TEXT,
    embedding vector(1536)
);

-- Create match document function
create or replace function match_documents (
  query_embedding vector(1536),
  match_threshold float,
  match_count int
)
returns table (
  id bigint,
  content text,
  similarity float
)
language plpgsql
as $$
begin
  return query
  select
    documents.id,
    documents.content,
    1 - (documents.embedding <=> query_embedding) as similarity
  from documents
  where 1 - (documents.embedding <=> query_embedding) > match_threshold
  order by similarity desc
  limit match_count;
end;
$$;

运行上述代码以执行您的查询。这将创建一个名为documents的表,包含三列:idcontentembedding。其中content列用于存储知识库的实际文本内容,而embedding列则用于存储知识库的向量嵌入。我们还创建了一个match_documents函数,用于对documents

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2340066.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能在慢病管理中的具体应用全集:从技术落地到场景创新

一、AI 赋能慢病管理:技术驱动医疗革新 1.1 核心技术原理解析 在当今数字化时代,人工智能(AI)正以前所未有的态势渗透进医疗领域,尤其是在慢性病管理方面,展现出巨大的潜力和独特优势。其背后依托的机器学习、深度学习、自然语言处理(NLP)以及物联网(IoT)与可穿戴设…

B+树节点与插入操作

B树节点与插入操作 设计B树节点 在设计B树的数据结构时&#xff0c;我们首先需要定义节点的格式&#xff0c;这将帮助我们理解如何进行插入、删除以及分裂和合并操作。以下是对B树节点设计的详细说明。 节点格式概述 所有的B树节点大小相同&#xff0c;这是为了后续使用自由…

线性回归之多项式升维

文章目录 多项式升维简介简单案例实战案例多项式升维优缺点 多项式升维简介 多项式升维&#xff08;Polynomial Expansion&#xff09;是线性回归中一种常用的特征工程方法&#xff0c;它通过将原始特征进行多项式组合来扩展特征空间&#xff0c;从而让线性模型能够拟合非线性关…

颠覆传统!毫秒级响应的跨平台文件同步革命,远程访问如本地操作般丝滑

文章目录 前言1. 安装Docker2. Go File使用演示3. 安装cpolar内网穿透4. 配置Go File公网地址5. 配置Go File固定公网地址 前言 在这个信息爆炸的时代&#xff0c;谁不曾遭遇过类似的窘境呢&#xff1f;试想&#xff0c;当你正于办公室中埋首案牍时&#xff0c;手机突然弹出一…

CrewAI Community Version(一)——初步了解以及QuickStart样例

目录 1. CrewAI简介1.1 CrewAI Crews1.2 CrewAI Flows1.3 Crews和Flows的使用情景 2. CrewAI安装2.1 安装uv2.2 安装CrewAI CLI 3. 官网QuickStart样例3.1 创建CrewAI Crews项目3.2 项目结构3.3 .env3.4 智能体角色及其任务3.4.1 agents.yaml3.4.2 tasks.yaml 3.5 crew.py3.6 m…

Nginx下搭建rtmp流媒体服务 并使用HLS或者OBS测试

所需下载地址&#xff1a; 通过网盘分享的文件&#xff1a;rtmp 链接: https://pan.baidu.com/s/1t21J7cOzQR1ASLrsmrYshA?pwd0000 提取码: 0000 window&#xff1a; 解压 win目录下的 nginx-rtmp-module-1.2.2.zip和nginx 1.7.11.3 Gryphon.zip安装包&#xff0c;解压时选…

Lateral 查询详解:概念、适用场景与普通 JOIN 的区别

1. 什么是Lateral查询&#xff1f; Lateral查询&#xff08;也称为横向关联查询&#xff09;是一种特殊的子查询&#xff0c;允许子查询中引用外层查询的列&#xff08;即关联引用&#xff09;&#xff0c;并在执行时逐行对外层查询的每一行数据执行子查询。 语法上通常使用关…

【springsecurity oauth2授权中心】简单案例跑通流程 P1

项目被拆分开&#xff0c;需要一个授权中心使得每个项目都去授权中心登录获取用户权限。而单一项目里权限使用的是spring-security来控制的&#xff0c;每个controller方法上都有 PreAuthorize("hasAuthority(hello)") 注解来控制权限&#xff0c;想以最小的改动来实…

spark—SQL3

连接方式 内嵌Hive&#xff1a; 使用时无需额外操作&#xff0c;但实际生产中很少使用。 外部Hive&#xff1a; 在虚拟机下载相关配置文件&#xff0c;在spark-shell中连接需将hive-site.xml拷贝到conf/目录并修改url、将MySQL驱动copy到jars/目录、把core-site.xml和hdfs-sit…

一文了解相位阵列天线中的真时延

本文要点 真时延是宽带带相位阵列天线的关键元素之一。 真时延透过在整个信号频谱上应用可变相移来消除波束斜视现象。 在相位阵列中使用时延单元或电路板&#xff0c;以提供波束控制和相移。 市场越来越需要更快、更可靠的通讯网络&#xff0c;而宽带通信系统正在努力满…

linux学习 5 正则表达式及通配符

重心应该放在通配符的使用上 正则表达式 正则表达式是用于 文本匹配和替换 的强大工具 介绍两个交互式的网站来学习正则表达式 regexlearn 支持中文 regexone 还有一个在线测试的网址 regex101 基本规则 符号作用示例.匹配任何字符除了换行a.b -> axb/a,b[abc]匹配字符…

基于超启发鲸鱼优化算法的混合神经网络多输入单输出回归预测模型 HHWOA-CNN-LSTM-Attention

基于超启发鲸鱼优化算法的混合神经网络多输入单输出回归预测模型 HHWOA-CNN-LSTM-Attention 随着人工智能技术的飞速发展&#xff0c;回归预测任务在很多领域得到了广泛的应用。尤其在金融、气象、医疗等领域&#xff0c;精确的回归预测模型能够为决策者提供宝贵的参考信息。为…

Android RK356X TVSettings USB调试开关

Android RK356X TVSettings USB调试开关 平台概述操作-打开USB调试实现源码补充说明 平台 RK3568 Android 11 概述 RK3568 是瑞芯微&#xff08;Rockchip&#xff09;推出的一款高性能处理器&#xff0c;支持 USB OTG&#xff08;On-The-Go&#xff09;和 USB Host 功能。US…

消息队列知识点详解

消息队列场景 什么是消息队列 可以把消息队列理解一个使用队列来通信的组件&#xff0c;它的本质是交换机队列的模式&#xff0c;实现发送消息&#xff0c;存储消息&#xff0c;消费消息的过程。 我们通常说的消息队列&#xff0c;MQ其实就是消息中间件&#xff0c;业界中比较…

序列号绑定的SD卡坏了怎么办?

在给SD卡烧录程序的时候&#xff0c;大家发现有的卡是无法烧录的&#xff0c;如&#xff1a;复印机的SD卡不能被复制通常涉及以下几个技术原因&#xff0c;可能与序列号绑定、加密保护或硬件限制有关&#xff1a; 一、我们以复印机的系统卡为例来简单讲述一下 序列号或硬件绑定…

使用SystemWeaver生成SOME/IP ETS ARXML的完整实战指南

使用SystemWeaver生成SOME/IP ETS ARXML的完整实战指南 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 一、SystemWeaver与SOME/IP基础认知 1.1 SystemWe…

Flutter 状态管理 Riverpod

Android Studio版本 Flutter SDK 版本 将依赖项添加到您的应用 flutter pub add flutter_riverpod flutter pub add riverpod_annotation flutter pub add dev:riverpod_generator flutter pub add dev:build_runner flutter pub add dev:custom_lint flutter pub add dev:riv…

【HarmonyOS 5】VisionKit人脸活体检测详解

【HarmonyOS 5】VisionKit人脸活体检测详解 一、VisionKit人脸活体检测是什么&#xff1f; VisionKit是HamronyOS提供的场景化视觉服务工具包。 华为将常见的解决方案&#xff0c;通常需要三方应用使用SDK进行集成。华为以Kit的形式集成在HarmoyOS系统中&#xff0c;方便三方…

Pycharm(九)函数的闭包、装饰器

目录 一、函数参数 二、闭包 三、装饰器 一、函数参数 def func01():print("func01 shows as follows") func01() # 函数名存放的是函数所在空间的地址 print(func01)#<function func01 at 0x0000023BA9FC04A0> func02func01 print(func02)#<function f…

【深度学习】详解矩阵乘法、点积,内积,外积、哈达玛积极其应用|tensor系列02

博主简介&#xff1a;努力学习的22级计算机科学与技术本科生一枚&#x1f338;博主主页&#xff1a; Yaoyao2024往期回顾&#xff1a;【深度学习】你真的理解张量了吗&#xff1f;|标量、向量、矩阵、张量的秩|01每日一言&#x1f33c;: “脑袋想不明白的&#xff0c;就用脚想”…