从入门AI到手写Transformer-17.整体代码讲解
- 17.整体代码讲解
- 代码
整理自视频 老袁不说话 。
17.整体代码讲解
代码
import collections
import math
import torch
from torch import nn
import os
import time
import numpy as np
from matplotlib import pyplot as plt
from matplotlib_inline import backend_inline
import hashlib
import os
import tarfile
import zipfile
import requests
from IPython import display
from torch.utils import data
DATA_HUB = dict()
DATA_URL = "http://d2l-data.s3-accelerate.amazonaws.com/"
DATA_HUB["fra-eng"] = (
DATA_URL + "fra-eng.zip",
"94646ad1522d915e7b0f9296181140edcf86a4f5",
)
def try_gpu(i=0):
"""如果存在,则返回gpu(i),否则返回cpu()"""
if torch.cuda.device_count() >= i + 1:
return torch.device(f"cuda:{i}")
return torch.device("cpu")
def bleu(pred_seq, label_seq, k):
"""计算BLEU"""
pred_tokens, label_tokens = pred_seq.split(" "), label_seq.split(" ")
len_pred, len_label = len(pred_tokens), len(label_tokens)
score = math.exp(min(0, 1 - len_label / len_pred))
for n in range(1, k + 1):
num_matches, label_subs = 0, collections.defaultdict(int)
for i in range(len_label - n + 1):
label_subs[" ".join(label_tokens[i : i + n])] += 1
for i in range(len_pred - n + 1):
if label_subs[" ".join(pred_tokens[i : i + n])] > 0:
num_matches += 1
label_subs[" ".join(pred_tokens[i : i + n])] -= 1
score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
return score
def count_corpus(tokens): # @save
"""统计词元的频率"""
# 这里的tokens是1D列表或2D列表
# tokens:["大","哥","大","嫂"] 已经是词元
# tokens:[["大","哥","大","嫂"]["过","年","好"]]
if len(tokens) == 0 or isinstance(tokens[0], list):
# 将空的/二维词元列表展平成一个列表
tokens = [token for line in tokens for token in line]
return collections.Counter(tokens) # Couter类统计频率
def download(name, cache_dir=os.path.join(".", "./data")):
"""下载一个DATA_HUB中的文件,返回本地文件名"""
assert name in DATA_HUB, f"{name} 不存在于{DATA_HUB}"
url, sha1_hash = DATA_HUB[name]
os.makedirs(cache_dir, exist_ok=True)
fname = os.path.join(cache_dir, url.split("/")[-1])
if os.path.exists(fname):
sha1 = hashlib.sha1()
with open(fname, "rb") as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
if sha1.hexdigest() == sha1_hash:
return fname # 命中缓存
print(f"正在从{url}下载{fname}...")
r = requests.get(url, stream=True, verify=True)
with open(fname, "wb") as f:
f.write(r.content)
return fname
def download_extract(name, folder=None): # @save
"""下载并解压zip/tar文件"""
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == ".zip":
fp = zipfile.ZipFile(fname, "r")
elif ext in (".tar", ".gz"):
fp = tarfile.open(fname, "r")
else:
assert False, "只有zip/tar文件可以被解压缩"
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
def read_data_nmt():
"""载入“英语-法语”数据集"""
data_dir = download_extract("fra-eng")
with open(os.path.join(data_dir, "fra.txt"), "r", encoding="utf-8") as f:
return f.read()
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
def sequence_mask(X, valid_len, value=0):
"""在序列中屏蔽不相关的项"""
maxlen = X.size(1)
mask = (
torch.arange((maxlen), dtype=torch.float32, device=X.device)[None, :]
< valid_len[:, None]
)
X[~mask] = value
return X
def preprocess_nmt(text):
"""预处理“英语-法语”数据集"""
def no_space(char, prev_char):
return char in set(",.!?") and prev_char != " "
# 使用空格替换不间断空格
# 使用小写字母替换大写字母
text = text.replace("\u202f", " ").replace("\xa0", " ").lower()
# 在单词和标点符号之间插入空格
out = [
" " + char if i > 0 and no_space(char, text[i - 1]) else char
for i, char in enumerate(text)
]
return "".join(out)
def tokenize_nmt(text, num_examples=None):
"""词元化“英语-法语”数据数据集"""
source, target = [], []
for i, line in enumerate(text.split("\n")):
if num_examples and i > num_examples:
break
parts = line.split("\t")
if len(parts) == 2:
source.append(parts[0].split(" "))
target.append(parts[1].split(" "))
return source, target
def grad_clipping(net, theta): # @save
"""裁剪梯度"""
if isinstance(net, nn.Module): # 如果模型继承于nn.Module
params = [p for p in net.parameters() if p.requires_grad] # 拿出所有参数,如果参数有梯度,就放进一个列表
else:
params = net.params
norm = torch.sqrt(sum(torch.sum((p.grad**2)) for p in params)) # 对梯度平方求和,求和两次之后就变成一个标量了
if norm > theta: # 和1比较
for param in params:
param.grad[:] *= theta / norm #/n 缩放模型大小,就是梯度裁剪
def truncate_pad(line, num_steps, padding_token):
"""截断或填充文本序列"""
if len(line) > num_steps:
return line[:num_steps] # 截断
return line + [padding_token] * (num_steps - len(line)) # 填充
def build_array_nmt(lines, vocab, num_steps):
"""将机器翻译的文本序列转换成小批量"""
lines = [vocab[l] for l in lines]
lines = [l + [vocab["<eos>"]] for l in lines]
array = torch.tensor([truncate_pad(l, num_steps, vocab["<pad>"]) for l in lines])
valid_len = (array != vocab["<pad>"]).type(torch.int32).sum(1)
return array, valid_len
def load_array(data_arrays, batch_size, is_train=True): # @save
"""构造一个PyTorch数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
def load_data_nmt(batch_size, num_steps, num_examples=600):
"""返回翻译数据集的迭代器和词表"""
text = preprocess_nmt(read_data_nmt())
source, target = tokenize_nmt(text, num_examples)
src_vocab = Vocab(source, min_freq=2, reserved_tokens=["<pad>", "<bos>", "<eos>"])
tgt_vocab = Vocab(target, min_freq=2, reserved_tokens=["<pad>", "<bos>", "<eos>"])
src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
data_iter = load_array(data_arrays, batch_size)
return data_iter, src_vocab, tgt_vocab
def sequence_mask(X, valid_len, value=0):
# """在序列中屏蔽不相关的项"""
maxlen = X.size(1)
mask = (
torch.arange((maxlen), dtype=torch.float32, device=X.device)[None, :]
< valid_len[:, None]
)
X[~mask] = value
return X
def transpose_qkv(X, num_heads):
# """为了多注意力头的并行计算而变换形状"""
# 输入X的形状:(batch_size,查询或者“键-值”对的个数,num_hiddens)
# 输出X的形状:(batch_size,查询或者“键-值”对的个数,num_heads,
# num_hiddens/num_heads)
X = X.reshape(X.shape[0], X.shape[1], num_heads, -1)
# 输出X的形状:(batch_size,num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
X = X.permute(0, 2, 1, 3)
# 最终输出的形状:(batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
return X.reshape(-1, X.shape[2], X.shape[3])
def train_seq2seq(net, data_iter, lr, num_epochs, tgt_vocab, device):
# """训练序列到序列模型"""
def xavier_init_weights(m): # 初始化权重
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight) # 线性层的初始化方式
if type(m) == nn.GRU:
for param in m._flat_weights_names:
if "weight" in param:
nn.init.xavier_uniform_(m._parameters[param])
net.apply(xavier_init_weights) # 给模型应用函数
net.to(device)
optimizer = torch.optim.Adam(net.parameters(), lr=lr) # 优化器
loss = MaskedSoftmaxCELoss() # 损失函数
net.train()
animator = Animator(xlabel="epoch", ylabel="loss", xlim=[10, num_epochs])
for epoch in range(num_epochs): # 执行批量循环
timer = Timer()
metric = Accumulator(2) # 训练损失总和,词元数量
for batch in data_iter:
optimizer.zero_grad() # 梯度置零
X, X_valid_len, Y, Y_valid_len = [x.to(device) for x in batch] # 取出XY和它们的有效长度
bos = torch.tensor(
[tgt_vocab["<bos>"]] * Y.shape[0], device=device # 对Y添加bos
).reshape(-1, 1)
dec_input = torch.cat([bos, Y[:, :-1]], 1) # 强制教学
Y_hat, _ = net(X, dec_input, X_valid_len)
l = loss(Y_hat, Y, Y_valid_len)
l.sum().backward() # 损失函数的标量进行“反向传播”
grad_clipping(net, 1) # 梯度裁剪
num_tokens = Y_valid_len.sum() # 统计一下计算了多少token
optimizer.step() # 梯度反传
with torch.no_grad():
metric.add(l.sum(), num_tokens)
if (epoch + 1) % 10 == 0:
animator.add(epoch + 1, (metric[0] / metric[1],))
print(
f"loss {metric[0] / metric[1]:.3f}, {metric[1] / timer.stop():.1f} "
f"tokens/sec on {str(device)}"
)
def predict_seq2seq(
net,
src_sentence,
src_vocab,
tgt_vocab,
num_steps,
device,
save_attention_weights=False,
):
# """序列到序列模型的预测"""
# 在预测时将net设置为评估模式
net.to(device)
net.eval()
src_tokens = src_vocab[src_sentence.lower().split(" ")] + [src_vocab["<eos>"]]
enc_valid_len = torch.tensor([len(src_tokens)], device=device)
src_tokens = truncate_pad(src_tokens, num_steps, src_vocab["<pad>"])
# 添加批量轴
enc_X = torch.unsqueeze(
torch.tensor(src_tokens, dtype=torch.long, device=device), dim=0
)
enc_outputs = net.encoder(enc_X, enc_valid_len) # 编码器只执行次
dec_state = net.decoder.init_state(enc_outputs, enc_valid_len) # 把编码器输出和有效长度都放进state里面
# 添加批量轴
dec_X = torch.unsqueeze(
torch.tensor([tgt_vocab["<bos>"]], dtype=torch.long, device=device), dim=0
)
output_seq, attention_weight_seq = [], []
for _ in range(num_steps):
# 只使用解码器块进行了n次预测
Y, dec_state = net.decoder(dec_X, dec_state) # Y:[b,n,vs]vs词表大小 预测时一句话b=1
# 我们使用具有预测最高可能性的词元,作为解码器在下一时间步的输入
dec_X = Y.argmax(dim=2) # 求维度里面最大值的下标,得到下标索引
pred = dec_X.squeeze(dim=0).type(torch.int32).item() # 根据下标索引转化成整形,就是预测值,[1,n]
# 保存注意力权重(稍后讨论)
if save_attention_weights:
attention_weight_seq.append(net.decoder.attention_weights)
# 一旦序列结束词元被预测,输出序列的生成就完成了
if pred == tgt_vocab["<eos>"]:
break
output_seq.append(pred) # 把值添加进output
return " ".join(tgt_vocab.to_tokens(output_seq)), attention_weight_seq # 根据词表大小把这些值转换成对应的词元,用join连接起来
def transpose_output(X, num_heads):
# """逆转transpose_qkv函数的操作"""
X = X.reshape(-1, num_heads, X.shape[1], X.shape[2])
X = X.permute(0, 2, 1, 3)
return X.reshape(X.shape[0], X.shape[1], -1)
def use_svg_display(): # @save
"""使用svg格式在Jupyter中显示绘图"""
backend_inline.set_matplotlib_formats("svg")
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
"""设置matplotlib的轴"""
axes.set_xlabel(xlabel)
axes.set_ylabel(ylabel)
axes.set_xscale(xscale)
axes.set_yscale(yscale)
axes.set_xlim(xlim)
axes.set_ylim(ylim)
if legend:
axes.legend(legend)
axes.grid()
def set_figsize(figsize=(3.5, 2.5)): # @save
"""设置matplotlib的图表大小"""
use_svg_display()
plt.rcParams["figure.figsize"] = figsize
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# 在本情况中,所有元素都被丢弃
if dropout == 1:
return torch.zeros_like(X)
# 在本情况中,所有元素都被保留
if dropout == 0:
return X
mask = (torch.rand(X.shape) > dropout).float()
return mask * X / (1.0 - dropout)
class Accumulator: # @save
"""在n个变量上累加"""
def __init__(self, n):
self.data = [0.0] * n
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class Timer: # @save
"""记录多次运行时间"""
def __init__(self):
self.times = []
self.start()
def start(self):
"""启动计时器"""
self.tik = time.time()
def stop(self):
"""停止计时器并将时间记录在列表中"""
self.times.append(time.time() - self.tik)
return self.times[-1]
def avg(self):
"""返回平均时间"""
return sum(self.times) / len(self.times)
def sum(self):
"""返回时间总和"""
return sum(self.times)
def cumsum(self):
"""返回累计时间"""
return np.array(self.times).cumsum().tolist()
class Animator:
"""在动画中绘制数据"""
def __init__(
self,
xlabel=None,
ylabel=None,
legend=None,
xlim=None,
ylim=None,
xscale="linear",
yscale="linear",
fmts=("-", "m--", "g-.", "r:"),
nrows=1,
ncols=1,
figsize=(3.5, 2.5),
):
# 增量地绘制多条线
if legend is None:
legend = []
use_svg_display()
self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [
self.axes,
]
# 使用lambda函数捕获参数
self.config_axes = lambda: set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend
)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
plt.draw()
plt.pause(0.001)
# display.clear_output(wait=True)
class Vocab:
"""文本词表"""
# 初始化类
# tokens:list ["go","some","play","run"]
def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
if tokens is None:
tokens = []
if reserved_tokens is None: # 特殊字符
reserved_tokens = []
# 按出现频率排序
counter = count_corpus(tokens) # 统计频率
# 排序,item拿到类似字典的键值对 x[1]频率 [(文字,频率),(文字,频率)]
self._token_freqs = sorted(counter.items(), key=lambda x: x[1], reverse=True)
# 未知词元的索引为0
# 保存所有的词元
self.idx_to_token = ["<unk>"] + reserved_tokens
# 字典,转化为键值对方便查找
self.token_to_idx = {token: idx for idx, token in enumerate(self.idx_to_token)}
# 将未舍弃的所有词元添加到(_token_freqs)添加到idx_to_token和token_to_idx
for token, freq in self._token_freqs:
if freq < min_freq: # 截断频率,默认为0,每个词都不舍弃
break
if token not in self.token_to_idx:
self.idx_to_token.append(token)
self.token_to_idx[token] = len(self.idx_to_token) - 1 # 把索引加到这个字典里
# 返回词表的长度,list方便计算
def __len__(self):
return len(self.idx_to_token)
# 实现词元转为对应的数字
# tokens:list,tuple
def __getitem__(self, tokens):
if not isinstance(tokens, (list, tuple)): # 如果是一个单独的词元
return self.token_to_idx.get(tokens, self.unk) # 在字典里用get方法找到它
return [self.__getitem__(token) for token in tokens] # 一个一个拿出来
# 将数字转化为词元
def to_tokens(self, indices):
if not isinstance(indices, (list, tuple)):
return self.idx_to_token[indices] # 单独索引直接返回
return [self.idx_to_token[index] for index in indices] # 遍历按照list返回
@property # 装饰器
def unk(self): # 未知词元的索引为0
return 0
@property # 装饰器
def token_freqs(self):
return self._token_freqs # 返回原始的未经舍弃的list
class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
# """带遮蔽的softmax交叉熵损失函数"""
# pred的形状:(batch_size,num_steps,vocab_size)
# label的形状:(batch_size,num_steps)
# valid_len的形状:(batch_size,)
def forward(self, pred, label, valid_len):
weights = torch.ones_like(label)
weights = sequence_mask(weights, valid_len)
self.reduction = "none"
unweighted_loss = super(MaskedSoftmaxCELoss, self).forward(
pred.permute(0, 2, 1), label
)
weighted_loss = (unweighted_loss * weights).mean(dim=1)
return weighted_loss
class MultiHeadAttention(nn.Module):
# """多头注意力"""
def __init__(
self,
key_size,
query_size,
value_size,
num_hiddens,
num_heads,
dropout,
bias=False,
**kwargs,
):
super(MultiHeadAttention, self).__init__(**kwargs)
self.num_heads = num_heads
self.attention = DotProductAttention(dropout)
self.W_q = nn.Linear(query_size, num_hiddens, bias=bias)
self.W_k = nn.Linear(key_size, num_hiddens, bias=bias)
self.W_v = nn.Linear(value_size, num_hiddens, bias=bias)
self.W_o = nn.Linear(num_hiddens, num_hiddens, bias=bias)
def forward(self, queries, keys, values, valid_lens):
# queries,keys,values的形状:
# (batch_size,查询或者“键-值”对的个数,num_hiddens)
# valid_lens 的形状:
# (batch_size,)或(batch_size,查询的个数)
# 经过变换后,输出的queries,keys,values 的形状:
# (batch_size*num_heads,查询或者“键-值”对的个数,
# num_hiddens/num_heads)
queries = transpose_qkv(self.W_q(queries), self.num_heads)
keys = transpose_qkv(self.W_k(keys), self.num_heads)
values = transpose_qkv(self.W_v(values), self.num_heads)
if valid_lens is not None:
# 在轴0,将第一项(标量或者矢量)复制num_heads次,
# 然后如此复制第二项,然后诸如此类。
valid_lens = torch.repeat_interleave(
valid_lens, repeats=self.num_heads, dim=0
)
# output的形状:(batch_size*num_heads,查询的个数,
# num_hiddens/num_heads)
output = self.attention(queries, keys, values, valid_lens)
# output_concat的形状:(batch_size,查询的个数,num_hiddens)
output_concat = transpose_output(output, self.num_heads)
return self.W_o(output_concat)
class PositionalEncoding(nn.Module):
# """位置编码"""
def __init__(self, num_hiddens, dropout, max_len=1000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(dropout)
# 创建一个足够长的P
self.P = torch.zeros((1, max_len, num_hiddens))
X = torch.arange(max_len, dtype=torch.float32).reshape(-1, 1) / torch.pow(
10000, torch.arange(0, num_hiddens, 2, dtype=torch.float32) / num_hiddens
)
self.P[:, :, 0::2] = torch.sin(X)
self.P[:, :, 1::2] = torch.cos(X)
def forward(self, X):
X = X + self.P[:, : X.shape[1], :].to(X.device)
return self.dropout(X)
class PositionWiseFFN(nn.Module):
# """基于位置的前馈网络"""
def __init__(self, ffn_num_input, ffn_num_hiddens, ffn_num_outputs, **kwargs):
super(PositionWiseFFN, self).__init__(**kwargs)
self.dense1 = nn.Linear(ffn_num_input, ffn_num_hiddens)
self.relu = nn.ReLU()
self.dense2 = nn.Linear(ffn_num_hiddens, ffn_num_outputs)
def forward(self, X):
return self.dense2(self.relu(self.dense1(X)))
class AddNorm(nn.Module):
# """残差连接后进行层规范化"""
def __init__(self, normalized_shape, dropout, **kwargs):
super(AddNorm, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
self.ln = nn.LayerNorm(normalized_shape)
nn.Softmax()
def forward(self, X, Y):
return self.ln(self.dropout(Y) + X)
class Encoder(nn.Module):
# """编码器-解码器架构的基本编码器接口"""
def __init__(self, **kwargs):
super(Encoder, self).__init__(**kwargs)
def forward(self, X, *args):
raise NotImplementedError
class Decoder(nn.Module):
# """编码器-解码器架构的基本解码器接口"""
def __init__(self, **kwargs):
super(Decoder, self).__init__(**kwargs)
def init_state(self, enc_outputs, *args):
raise NotImplementedError
def forward(self, X, state):
raise NotImplementedError
class EncoderDecoder(nn.Module):
# """编码器-解码器架构的基类"""
def __init__(self, encoder, decoder, **kwargs):
super(EncoderDecoder, self).__init__(**kwargs)
self.encoder = encoder
self.decoder = decoder
def forward(self, enc_X, dec_X, *args):
enc_outputs = self.encoder(enc_X, *args)
dec_state = self.decoder.init_state(enc_outputs, *args)
return self.decoder(dec_X, dec_state)
class DotProductAttention(nn.Module):
# """缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1, 2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)
class AttentionDecoder(Decoder):
# """带有注意力机制解码器的基本接口"""
def __init__(self, **kwargs):
super(AttentionDecoder, self).__init__(**kwargs)
@property
def attention_weights(self):
raise NotImplementedError
class EncoderBlock(nn.Module):
# """Transformer编码器块"""
def __init__(
self,
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
dropout,
use_bias=False,
**kwargs,
):
super(EncoderBlock, self).__init__(**kwargs)
self.attention = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout, use_bias
)
self.addnorm1 = AddNorm(norm_shape, dropout)
self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)
self.addnorm2 = AddNorm(norm_shape, dropout)
def forward(self, X, valid_lens):
Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
return self.addnorm2(Y, self.ffn(Y))
class DecoderBlock(nn.Module):
# """解码器中第i个块"""
def __init__(
self,
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
dropout,
i,
**kwargs,
):
super(DecoderBlock, self).__init__(**kwargs)
self.i = i # 表示这是第i个块
self.attention1 = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout
)
self.addnorm1 = AddNorm(norm_shape, dropout) # dropout在addnorm里面
self.attention2 = MultiHeadAttention(
key_size, query_size, value_size, num_hiddens, num_heads, dropout
)
self.addnorm2 = AddNorm(norm_shape, dropout)
self.ffn = PositionWiseFFN(ffn_num_input, ffn_num_hiddens, num_hiddens)
self.addnorm3 = AddNorm(norm_shape, dropout)
def forward(self, X, state): # 输入的output 推理阶段大小[1,1]state存放3个量,1个编码器输出,1个用来产生编码器mask,1个用来连接推理结果
enc_outputs, enc_valid_lens = state[0], state[1]
# 训练阶段,输出序列的所有词元都在同一时间处理,
# 因此state[2][self.i]初始化为None。
# 预测阶段,输出序列是通过词元一个接着一个解码的,
# 因此state[2][self.i]包含着直到当前时间步第i个块解码的输出表示 [bos] he is
if state[2][self.i] is None:
key_values = X
else:
key_values = torch.cat((state[2][self.i], X), axis=1)
state[2][self.i] = key_values
if self.training:
batch_size, num_steps, _ = X.shape
# dec_valid_lens的开头:(batch_size,num_steps),
# 其中每一行是[1,2,...,num_steps]
dec_valid_lens = torch.arange(1, num_steps + 1, device=X.device).repeat(
batch_size, 1
)
else:
dec_valid_lens = None
# 自注意力
X2 = self.attention1(X, key_values, key_values, dec_valid_lens)
Y = self.addnorm1(X, X2) # dropout加在addnorm里面
# 编码器-解码器注意力。
# enc_outputs的开头:(batch_size,num_steps,num_hiddens)
Y2 = self.attention2(Y, enc_outputs, enc_outputs, enc_valid_lens) # Q来自addnorm,解码器输出做K,V
Z = self.addnorm2(Y, Y2)
return self.addnorm3(Z, self.ffn(Z)), state
class TransformerEncoder(Encoder):
# """Transformer编码器"""
def __init__(
self,
vocab_size,
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
num_layers,
dropout,
use_bias=False,
**kwargs,
):
super(TransformerEncoder, self).__init__(**kwargs)
self.num_hiddens = num_hiddens
self.embedding = nn.Embedding(vocab_size, num_hiddens)
# self.embedding = nn.Embedding(vocab_size, num_hiddens, device=try_gpu())
self.pos_encoding = PositionalEncoding(num_hiddens, dropout)
self.blks = nn.Sequential()
for i in range(num_layers):
self.blks.add_module(
"block" + str(i),
EncoderBlock(
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
dropout,
use_bias,
),
)
def forward(self, X, valid_lens, *args):
# 因为位置编码值在-1和1之间,
# 因此嵌入值乘以嵌入维度的平方根进行缩放,
# 然后再与位置编码相加。
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens))
self.attention_weights = [None] * len(self.blks)
for i, blk in enumerate(self.blks):
X = blk(X, valid_lens)
self.attention_weights[i] = blk.attention.attention.attention_weights
return X
class TransformerDecoder(AttentionDecoder):
def __init__(
self,
vocab_size,
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
num_layers,
dropout,
**kwargs,
):
super(TransformerDecoder, self).__init__(**kwargs)
self.num_hiddens = num_hiddens
self.num_layers = num_layers
self.embedding = nn.Embedding(vocab_size, num_hiddens)
self.pos_encoding = PositionalEncoding(num_hiddens, dropout) # dropout在里面
self.blks = nn.Sequential()
for i in range(num_layers): # n个block块
self.blks.add_module(
"block" + str(i),
DecoderBlock(
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
dropout,
i,
),
)
self.dense = nn.Linear(num_hiddens, vocab_size) # 线性层,不执行softmax不影响下标
def init_state(self, enc_outputs, enc_valid_lens, *args):
return [enc_outputs, enc_valid_lens, [None] * self.num_layers]
# state 第一个有效数字是编码器输出,第二个有效数字是编码器的有效长度,用来产生mask,第三个是用来保存KV
def forward(self, X, state):
X = self.pos_encoding(self.embedding(X) * math.sqrt(self.num_hiddens)) # *根号d,位置编码
self._attention_weights = [[None] * len(self.blks) for _ in range(2)]
for i, blk in enumerate(self.blks): # block块
X, state = blk(X, state)
# 解码器自注意力权重
self._attention_weights[0][i] = blk.attention1.attention.attention_weights
# “编码器-解码器”自注意力权重
self._attention_weights[1][i] = blk.attention2.attention.attention_weights
return self.dense(X), state
@property
def attention_weights(self):
return self._attention_weights
if __name__ == "__main__":
num_hiddens, num_layers, dropout, batch_size, num_steps = 32, 2, 0.1, 64, 10
lr, num_epochs, device = 0.005, 200, try_gpu()
ffn_num_input, ffn_num_hiddens, num_heads = 32, 64, 4
key_size, query_size, value_size = 32, 32, 32
norm_shape = [32]
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size, num_steps)
encoder = TransformerEncoder(
len(src_vocab),
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
num_layers,
dropout,
)
decoder = TransformerDecoder(
len(tgt_vocab),
key_size,
query_size,
value_size,
num_hiddens,
norm_shape,
ffn_num_input,
ffn_num_hiddens,
num_heads,
num_layers,
dropout,
)
net = EncoderDecoder(encoder, decoder)
train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device) # 训练
engs = ["go .", "i lost .", "he's calm .", "i'm home ."]
fras = ["va !", "j'ai perdu .", "il est calme .", "je suis chez moi ."]
for eng, fra in zip(engs, fras):
translation, dec_attention_weight_seq = predict_seq2seq( # 预测
net, eng, src_vocab, tgt_vocab, num_steps, device, True
)
print(f"{eng} => {translation}, ", f"bleu {bleu(translation, fra, k=2):.3f}")
输出结果
```python
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
<Figure size 350x250 with 1 Axes>
loss 0.034, 10150.2 tokens/sec on cpu
go . => va !, bleu 1.000
i lost . => je vous en <unk> ., bleu 0.000
he's calm . => il est calme ., bleu 1.000
i'm home . => je suis chez moi ., bleu 1.000