算法训练之动态规划(三)

news2025/4/18 21:27:09


♥♥♥~~~~~~欢迎光临知星小度博客空间~~~~~~♥♥♥

♥♥♥零星地变得优秀~也能拼凑出星河~♥♥♥

♥♥♥我们一起努力成为更好的自己~♥♥♥

♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥

♥♥♥如果有什么问题可以评论区留言或者私信我哦~♥♥♥

✨✨✨✨✨✨ 个人主页✨✨✨✨✨✨

        接下来这篇博客我们将继续在题目中使用巧妙的动态规划思想~准备好了吗~我们发车去探索奥秘啦~🚗🚗🚗🚗🚗🚗

下降路径的最小和

下降路径的最小和

这个题目看起来有点吓人,别怕,接下来我们一步步按照动态规划的思想来解决这道问题~

分析:

1、状态表示

        结合这里的题目要求+经验:我们这里的状态表示——dp[i][j]为到达该位置的最小路径和

2、状态转移方程

       我们以离【i】【j】位置最近的状态分析状态转移方程(题目要求最多相隔一列)所以有下面的三种情况:

1、到达该位置,可能是从第【i-1】【j】位置向下一步到达的

2、到达该位置,可能是从第【i-1】【j-1】位置向下再向右一步到达的

3、到达该位置,可能是从第【i-1】【j+1】位置向下再向左一步到达的

       所以到达该位置最小路径和也就是三种情况的最小值再加上当前位置的数据(注意下标映射关系),所以状态转移方程也就是:

                dp[i][j]=min(min(dp[i-1][j],dp[i-1][j-1]),dp[i-1][j+1]) + nums[i-1][j-1]

3、初始化

        我们可以看到,状态转移方程里面有i-1,j-1,j+1当i=0或者j=0或者j=n的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦,我们可以多申请一些空间,这里与前面不一样的是这里是我们这里还有一个j+1,那么我们这里也就可以多申请一行两列~那么怎么初始化这一行两列呢?

        我们结合例子来看看:

        我们首先来看看结合我们的逻辑dp[i][j]里面的值在具体的例子中是多少?

      我们可以看到第一行就是它本身的值,而第一行是受到我们增加的那一行影响的,所以我们增加的那一行应该全部初始化为0,才不会出错~接下来看后面的两行,都是在取上一行三个位置的最小值加上当前位置值得到的,那么旁边的两列如果也初始化为0的话,那么边界找到的最小值就是0了,这并不是数组里面的有效数据~所以为了避免影响,我们也就可以把两列位置设置成INT_MAX,题目给出数据大小范围,显然dp[i][j]是不会超过INT_MAX的,那么我们就可以这样进行初始化~

                第一行初始化为0,剩下的位置初始化为INT_MAX

       

 

        这种初始化方式还需要注意的是下标的映射关系~

4、填表顺序

        我们这里的逻辑是从上面依次推出下面的,所以填表顺序是从上向下

5、返回结果

      这里返回结果也与我们前面的不一样,因为它不是一个具体的位置,最小路径和存在于最后一行,所以我们可以找到dp表最后一行最小值进行返回~

代码实现:

class Solution 
{
public:
    int minFallingPathSum(vector<vector<int>>& matrix) 
    {
        //1、创建dp表
        int m=matrix.size();
        int n=matrix[0].size();
        //多创建一行两列
        vector<vector<int>> dp(m+1,vector<int>(n+2,INT_MAX));
        //最开始就把所有位置初始化为INT_MAX
        //2、初始化
        //最开始就把所有位置初始化为INT_MAX了
        //初始化第一行为0
        for(int j=0;j<=n+1;j++)
        {
            dp[0][j]=0;
        }
        //3、填表
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=min(min(dp[i-1][j-1],dp[i-1][j]),dp[i-1][j+1])+matrix[i-1][j-1];//注意下标映射关系
            }
        }
        //4、返回结果
        //找到最后一行最小值进行返回
        int ret=dp[m][1];
        for(int i=2;i<=n;i++)
        {
            ret=min(ret,dp[m][i]);
        }
        return ret;
    }
};

顺利通过~分析之后也就十分清楚了,我们来看看下一道题目~

最小路径和

最小路径和

我们同样可以一步步来分析:

1、状态表示

        结合这里的题目要求+经验:我们这里的状态表示——dp[i][j]为到达该位置的最小总和

2、状态转移方程

       我们以离【i】【j】位置最近的状态分析状态转移方程(题目要求只能向下或者向右移动)所以有下面的两种情况:

1、到达该位置,可能是从第【i-1】【j】位置向下一步到达的

2、到达该位置,可能是从第【i】【j-1】位置向右一步到达的

       所以到达该位置最小总和也就是两种情况的最小值再加上当前位置的数据(注意下标映射关系),所以状态转移方程也就是:

                dp[i][j]=min(dp[i-1][j],dp[i][j-1]) + nums[i-1][j-1]

3、初始化

        我们可以看到,状态转移方程里面有i-1,j-1当i=0或者j=0的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦,我们可以多申请一些空间,那么我们这里结合经验也就可以多申请一行一列~那么怎么初始化这一行一列呢?

        我们结合例子来看看:

        我们首先来看看结合我们的逻辑dp[i][j]里面的值在具体的例子中是多少?

      我们可以看到除了左上角的数就是它本身的值,其他的值都发生了变化,而左上角的数是受到它上面的位置和左边的位置影响的,结合状态转移方程  dp[i][j]=min(dp[i-1][j],dp[i][j-1]) + nums[i-1][j-1],所以它上面的位置和左边的位置应该初始化为0,才不会出错~接下来看剩下的位置,每一个位置都是在取当前位置上面的位置和左边的位置的最小值加上当前位置值得到的,那么如果也初始化为0的话,那么边界找到的最小值就是0了,这并不是数组里面的有效数据~所以为了避免影响,我们也就可以把剩下的设置成INT_MAX,题目给出数据大小范围,显然dp[i][j]是不会超过INT_MAX的,那么我们就可以这样进行初始化~

       dp[1][0]=dp[0][1]=0,剩下的位置初始化为INT_MAX

 

        这种初始化方式还需要注意的是下标的映射关系~

4、填表顺序

        我们这里的逻辑是从上面依次推出下面的,所以填表顺序是从上向下

5、返回结果

     右下角的位置就是我们想要的结果,直接返回dp[m][n]就可以了

有了前面题目的铺垫,相信这道题目就手到擒来了~

代码实现:

class Solution 
{
public:
    int minPathSum(vector<vector<int>>& grid) 
    {
        //1、创建dp表
        int m=grid.size();
        int n=grid[0].size();
        //dp表最开始全部初始化为INT_MAX
        vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));

        //2、初始化
        dp[0][1]=dp[1][0]=0;

        //3、填表
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
                //注意下标映射关系
            }
        }
        //4、返回结果
        return dp[m][n];
    }
};

顺利通过~

地下城游戏

地下城游戏

一看这题目就有点吓人,我们同样按照我们之前的步骤来进行分析:

1、状态表示

        结合这里的题目要求+经验:状态表示一般有两种方式:

1、以某一个位置为结尾分析

        我们这里来看看如果我们以【i】【j】位置为结尾来分析的话,认为dp【i】【j】表示的是到该位置的最低健康点数,那么我们可以发现dp【i】【j】不仅仅受到前面位置的影响,还会受到后面位置的影响,这样就会十分麻烦,所以我们换一种方式~

2、以某一个位置为起点分析

        我们这里来看看如果我们以【i】【j】位置为起点来分析的话,认为dp【i】【j】表示的是从该位置开始到达指定位置的最低健康点数,那么dp【i】【j】只受到后面位置的影响,这样就更加方便~

2、状态转移方程

       我们以离【i】【j】位置最近的状态分析状态转移方程(题目要求只能向下或者向右移动)所以有下面的两种情况:

1、以该位置为起点,可能是向下一步到达第【i+1】【j】位置

2、以该位置为起点,可能是向右一步到达第【i】【j+1】位置

       所以dp【i】【j】也就是以该位置为起点,两种情况的最小值再减去当前位置的数据(这里增加不需要注意下标映射关系),所以状态转移方程也就是:

                dp[i][j]=min(dp[i+1][j],dp[i][j+1]) - nums[i][j]

        这样处理之后,还有一种情况就是dp[i][j]是负数了,也就是nums[i][j]很大,那么该位置的最小健康点数只需要是1经过加上nums[i][j]就可以了,所以还需要处理为负数的情况~

        dp[i][j]=max(1,dp[i][j])

3、初始化

        我们可以看到,状态转移方程里面有i+1,j+1当i=m-1或者j=n-1的时候显然会出现越界的情况,所以我们需要进行初始化

        结合前面如果不想初始化太麻烦,我们可以多申请一些空间,那么我们这里结合经验也就可以多申请一行一列~与前面不同的是这里是以【i】【j】位置为起点来分析,所以加的那一行一列在后面,那么怎么初始化这一行一列呢?

        我们结合例子来看看:

        我们首先来看看结合我们的逻辑dp[i][j]里面的值在具体的例子中是多少?

      我们可以看到除了右下角的数到达右边或者下边那一个位置至少还应该剩下1的健康点数,不能刚好到了就死亡了,所以dp【m-1】【n】=dp【m】【n-1】=1,接下来看剩下的位置,每一个位置都是在取当前位置下面的位置和右边的位置的最小值加上当前位置值得到的,那么如果也初始化为1的话,那么边界找到的最小值就是错误的~所以为了避免影响,我们也就可以把剩下的设置成INT_MAX,题目给出数据大小范围,显然dp[i][j]是不会超过INT_MAX的,那么我们就可以这样进行初始化~

       dp[m-1][n]=dp[m][n-1]=1,剩下的位置初始化为INT_MAX

 

        这种初始化方式还不需要注意下标的映射关系了~因为位置与数组一一对应的~

4、填表顺序

        我们这里的逻辑是从下面/右边依次推出上面/左边的,所以填表顺序是从下向上,从右向左

5、返回结果

     左上角的位置就是我们想要的结果,直接返回dp[0][0]就可以了

代码实现:

class Solution 
{
public:
    int calculateMinimumHP(vector<vector<int>>& d) 
    {
        //1、创建dp表
        int m=d.size();
        int n=d[0].size();
        //最开始全部初始化为INT_MAX
        vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));

        //2、初始化
        dp[m-1][n]=dp[m][n-1]=1;

        //3、填表
        //注意填表顺序
        for(int i=m-1;i>=0;i--)
        {
            for(int j=n-1;j>=0;j--)
            {
                dp[i][j]=min(dp[i+1][j],dp[i][j+1])-d[i][j];
                //处理为负的情况
                dp[i][j]=max(1,dp[i][j]);
            }
        }
        //4、返回结果
        return dp[0][0];
    }
};

顺利通过~


♥♥♥本篇博客内容结束,期待与各位优秀程序员交流,有什么问题请私信♥♥♥

♥♥♥如果这一篇博客对你有帮助~别忘了点赞分享哦~♥♥♥

✨✨✨✨✨✨个人主页✨✨✨✨✨✨


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2332468.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

xv6-labs-2024 lab2

lab-2 0. 前置 课程记录 操作系统的隔离性&#xff0c;举例说明就是&#xff0c;当我们的shell&#xff0c;或者qq挂掉了&#xff0c;我们不希望因为他&#xff0c;去影响其他的进程&#xff0c;所以在不同的应用程序之间&#xff0c;需要有隔离性&#xff0c;并且&#xff0…

基于FPGA实现BPSK 调制

目录 一、 任务介绍二、基本原理三、基于FPGA实现BPSK 调制四、源码 一、 任务介绍 BPSK 调制在数字通信系统中是一种极重要的调制方式&#xff0c;它的抗干扰噪声性能及通频带的利用率均优先于 ASK 移幅键控和 FSK 移频键控。因此&#xff0c;PSK 技术在中、高速数据传输中得…

在排序数组中查找元素的第一个和最后一个位置 --- 二分查找

目录 一&#xff1a;题目 二&#xff1a;算法原理分析 三&#xff1a;代码实现 一&#xff1a;题目 题目链接&#xff1a; 34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣&#xff08;LeetCode&#xff09; 二&#xff1a;算法原理分析 三&#xff1a;代码实现 c…

631SJBH中小型企业的网络管理模式的方案设计

1.1、研究现状 我国很多企业信息化水平一直还处在非常初级的阶段&#xff0c;有关统计表明&#xff0c;真正实现了计算机较高应用的企业在全国1000多万中小企业中所占的比例还不足10&#xff05;幢3。大多数企业还停留在利用互联网进行网上查询(72&#xff0e;9&#xff05;)、…

LangChain4j(1):初步认识Java 集成 LLM 的技术架构

LangChain 作为构建具备 LLM 能力应用的框架&#xff0c;虽在 Python 领域大放异彩&#xff0c;但 Java 开发者却只能望洋兴叹。LangChain4j 正是为解决这一困境而诞生&#xff0c;它旨在借助 LLM 的强大效能&#xff0c;增强 Java 应用&#xff0c;简化 LLM 功能在Java应用中的…

【C++算法】53.链表_重排链表

文章目录 题目链接&#xff1a;题目描述&#xff1a;解法C 算法代码&#xff1a; 题目链接&#xff1a; 143. 重排链表 题目描述&#xff1a; 解法 模拟 找到链表的中间节点 快慢双指针 把后面的部分逆序 双指针&#xff0c;三指针&#xff0c;头插法 合并两个链表 合并两个有…

多卡分布式训练:torchrun --nproc_per_node=5

多卡分布式训练:torchrun --nproc_per_node=5 1. torchrun 实现规则 torchrun 是 PyTorch 提供的用于启动分布式训练作业的实用工具,它基于 torch.distributed 包,核心目标是简化多进程分布式训练的启动和管理。以下是其主要实现规则: 进程启动 多进程创建:torchrun 会…

Elasticsearch:加快 HNSW 图的合并速度

作者&#xff1a;来自 Elastic Thomas Veasey 及 Mayya Sharipova 过去&#xff0c;我们曾讨论过搜索多个 HNSW 图时所面临的一些挑战&#xff0c;以及我们是如何缓解这些问题的。当时&#xff0c;我们也提到了一些计划中的改进措施。本文正是这项工作的成果汇总。 你可能会问…

图片中文字无法正确显示的解决方案

图片中文字无法正确显示的解决方案 问题描述 在 Linux 系统中生成图片时&#xff0c;图片中的文字&#xff08;如中文&#xff09;未能正确显示&#xff0c;可能表现为乱码或空白。这通常是由于系统缺少对应的字体文件&#xff08;如宋体/SimSun&#xff09;&#xff0c;或者…

ISP--Demosaicking

文章目录 前言算法解释简单的线性插值代码实现 色差法和色比法基于方向加权的方法RB缺失的G通道的插值RB缺失的BR的插值G缺失的BR的插值代码实现 基于边缘检测的方法计算缺失的G计算缺失的RB值/计算缺失的G值 前言 人眼之所以有能感受到自然界的颜色&#xff0c;是因为人眼的感…

国标GB28181协议EasyCVR视频融合平台:5G时代远程监控赋能通信基站安全管理

一、背景介绍 随着移动通信行业的迅速发展&#xff0c;无人值守的通信基站建设规模不断扩大。这些基站大多建于偏远地区&#xff0c;周边人迹罕至、交通不便&#xff0c;给日常的维护带来了极大挑战。其中&#xff0c;位于空旷地带的基站设备&#xff0c;如空调、蓄电池等&…

模拟-与-现实协同训练:基于视觉机器人操控的简单方法

25年3月来自 UT Austin、Nvidia、UC Berkeley 和纽约大学的论文“Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation”。 大型现实世界机器人数据集在训练通才机器人模型方面拥有巨大潜力&#xff0c;但扩展现实世界人类数据收集既耗时又耗资…

WRS-PHM电机智能安康系统:为浙江某橡胶厂构筑坚实的生产防线

以行业工况为背景 一、顾客工厂的背景 浙江某橡胶厂以电机为中心生产设备必须连续平稳运行。但由于缺乏有效的故障预警体系&#xff0c;电机故障就像潜伏着的“不定时炸弹”,不但不时地造成生产流程的中断&#xff0c;也使对生产进行管理异常艰难&#xff0c;对持续安全生产提…

将 CrewAI 与 Elasticsearch 结合使用

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何使用 CrewAI 为你的代理团队创建一个 Elasticsearch 代理&#xff0c;并执行市场调研任务。 CrewAI 是一个用于编排代理的框架&#xff0c;它通过角色扮演的方式让多个代理协同完成复杂任务。 如果你想了解更多关于代理…

Spring 的 IoC 和 DI 详解:从零开始理解与实践

Spring 的 IoC和 DI 详解&#xff1a;从零开始理解与实践 一、IoC&#xff08;控制反转&#xff09; 1、什么是 IoC&#xff1f; IoC 是一种设计思想&#xff0c;它的核心是将对象的创建和管理权从开发者手中转移到外部容器&#xff08;如 Spring 容器&#xff09;。通过这种…

ZYNQ笔记(四):AXI GPIO

版本&#xff1a;Vivado2020.2&#xff08;Vitis&#xff09; 任务&#xff1a;使用 AXI GPIO IP 核实现按键 KEY 控制 LED 亮灭&#xff08;两个都在PL端&#xff09; 一、介绍 AXI GPIO (Advanced eXtensible Interface General Purpose Input/Output) 是 Xilinx 提供的一个可…

实操(环境变量)Linux

环境变量概念 我们用语言写的文件编好后变成了程序&#xff0c;./ 运行的时候他就会变成一个进程被操作系统调度并运行&#xff0c;运行完毕进程相关资源被释放&#xff0c;因为它是一个bash的子进程&#xff0c;所以它退出之后进入僵尸状态&#xff0c;bash回收他的退出结果&…

Word / WPS 页面顶部标题 段前间距 失效 / 不起作用 / 不显示,标题紧贴页眉 问题及解决

问题描述&#xff1a; 在 Word 或者 WPS 里面&#xff0c;如果不是新的一节&#xff0c;而是位于新的一页首行时&#xff0c;不管怎么设置段前间距&#xff0c;始终是失效的&#xff0c;实际段前间距一直是零。 解决方案&#xff1a; 查询了很多方案均无法解决问题&#xff…

Linux自行实现的一个Shell(15)

文章目录 前言一、头文件和全局变量头文件全局变量 二、辅助函数获取用户名获取主机名获取当前工作目录获取最后一级目录名生成命令行提示符打印命令行提示符 三、命令处理获取用户输入解析命令行执行外部命令 四、内建命令添加环境变量检查和执行内建命令 五、初始化初始化环境…

在 Q3D 中提取汇流条电感

汇流条排简介和设计注意事项 汇流条排是用于配电的金属导体&#xff0c;在许多应用中与传统布线相比具有设计优势。在设计母线排时&#xff0c;必须考虑几个重要的因素&#xff1a; 低电感&#xff1a;高频开关内容会导致无功损耗&#xff0c;从而降低效率电容&#xff1a;管…