目录
一、二叉树
1. 二叉树的深度遍历(DFS:前序、中序、后序遍历)
2. 二叉树的最大深度
3. 翻转二叉树
4. 对称二叉树
5. 二叉树的直径
6. 二叉树的层序遍历
7. 将有序数组转换为二叉搜索树
8. 验证二叉搜索树
9. 二叉搜索树中第 K 小的元素
10. 二叉树的右视图
11. 二叉树展开为链表
12. 从前序与中序遍历序列构造二叉树
13. 路径总和 III
14. 二叉树的最近公共祖先
15. 二叉树中的最大路径和
二、图论
1. 岛屿数量
2. 腐烂的橘子
3. 课程表
4. 实现 Trie (前缀树)
前言
一、二叉树:二叉树的中序遍历,二叉树的最大深度,翻转二叉树,对称二叉树,二叉树的直径,二叉树的层序遍历,将有序数组转换为二叉搜索树,验证二叉搜索树,二叉搜索树中第 K 小的元素,二叉树的右视图,二叉树展开为链表,从前序与中序遍历序列构造二叉树,路径总和 III,二叉树的最近公共祖先,二叉树中的最大路径和。
二、图论:岛屿数量,腐烂的橘子,课程表,实现 Trie (前缀树)。
一、二叉树
1. 二叉树的深度遍历(DFS:前序、中序、后序遍历)
原题链接:94. 二叉树的中序遍历 - 力扣(LeetCode)
# (1)前序遍历:根-左-右
class Solution(object):
def preorderTraversal(self, root):
res = []
def preorder(root):
if not root:
return
res.append(root.val)
preorder(root.left)
preorder(root.right)
preorder(root)
return res
# (2)中序遍历:左-根-右
class Solution(object):
def inorderTraversal(self, root):
res = []
def inorder(root):
if not root:
return
inorder(root.left)
res.append(root.val)
inorder(root.right)
inorder(root)
return res
# (3)后序遍历:左-右-根
class Solution(object):
def postorderTraversal(self, root):
res = []
def inorder(root):
if not root:
return
postorder(root.left)
postorder(root.right)
res.append(root.val)
postorder(root)
return res
2. 二叉树的最大深度
原题链接:104. 二叉树的最大深度 - 力扣(LeetCode)
class Solution(object):
def maxDepth(self, root):
if not root:
return 0
left_height = self.maxDepth(root.left)
right_height = self.maxDepth(root.right)
return max(left_height, right_height) + 1
3. 翻转二叉树
原题链接:226. 翻转二叉树 - 力扣(LeetCode)
class Solution(object):
def invertTree(self, root):
if not root:
return
root.left, root.right = root.right, root.left
self.invertTree(root.left)
self.invertTree(root.right)
return root
4. 对称二叉树
原题链接:101. 对称二叉树 - 力扣(LeetCode)
class Solution(object):
def isSymmetric(self, root):
def check(left, right):
if not left and not right:
return True
if not left or not right:
return False
if left.val != right.val:
return False
return check(left.left, right.right) and check(left.right, right.left)
return check(root.left, root.right)
5. 二叉树的直径
原题链接:543. 二叉树的直径 - 力扣(LeetCode)
class Solution(object):
def diameterOfBinaryTree(self, root):
def dfs(root):
if not root:
return 0, 0
ld, ldepth = dfs(root.left)
rd, rdepth = dfs(root.right)
return max(ld, rd, ldepth+rdepth), max(ldepth, rdepth) + 1
return dfs(root)[0]
6. 二叉树的层序遍历
原题链接:102. 二叉树的层序遍历 - 力扣(LeetCode)
class Solution(object):
def levelOrder(self, root):
if not root:
return []
node = [root]
res = []
while len(node) > 0:
res.append([i.val for i in node])
node2 = []
for i in node:
if i.left:
node2.append(i.left)
if i.right:
node2.append(i.right)
node = node2
return res
7. 将有序数组转换为二叉搜索树
原题链接:108. 将有序数组转换为二叉搜索树 - 力扣(LeetCode)
class Solution(object):
def sortedArrayToBST(self, nums):
def dfs(left, right):
if left > right:
return
mid = (left + right) // 2
root = TreeNode(nums[mid])
root.left = dfs(left, mid-1)
root.right = dfs(mid+1, right)
return root
return dfs(0, len(nums)-1)
8. 验证二叉搜索树
原题链接:98. 验证二叉搜索树 - 力扣(LeetCode)
class Solution(object):
def isValidBST(self, root, left=float('-inf'), right=float('inf')):
if not root:
return True
x = root.val
return left < x < right and self.isValidBST(root.left, left, x) and self.isValidBST(root.right, x, right)
# self.isValidBST(root.left, left, x):遍历左子树,右边界更新
# self.isValidBST(root.right, x, right):遍历右子树,左边界更新
9. 二叉搜索树中第 K 小的元素
原题链接:230. 二叉搜索树中第 K 小的元素 - 力扣(LeetCode)
# 先通过前序/中序/后序遍历转为list,而后利用list属性找第k个小的元素。
# 此代码使用前序遍历(根-左-右)
class Solution(object):
def kthSmallest(self, root, k):
res = []
def preorder(root):
if not root:
return
res.append(root.val)
preorder(root.left)
preorder(root.right)
return res
res = preorder(root)
res.sort()
return res[k-1]
10. 二叉树的右视图
原题链接:199. 二叉树的右视图 - 力扣(LeetCode)
class Solution(object):
def rightSideView(self, root):
# if len(res) == depth: res.append(root.val)
# 先遍历右子树,再遍历左子树
res = []
def dfs(root, depth):
if not root:
return []
if len(res) == depth:
res.append(root.val)
dfs(root.right, depth+1)
dfs(root.left, depth+1)
return res
return dfs(root, 0)
11. 二叉树展开为链表
原题链接:114. 二叉树展开为链表 - 力扣(LeetCode)
# 按 ‘根-左-右’ 的前序遍历顺序展开
class Solution(object):
def flatten(self, root):
self.prev = TreeNode()
def preorder(root):
if not root:
return []
left, right = root.left, root.right
self.prev.left = None
self.prev.right = root
self.prev = self.prev.right
preorder(left)
preorder(right)
return self.prev
preorder(root)
12. 从前序与中序遍历序列构造二叉树
原题链接:105. 从前序与中序遍历序列构造二叉树 - 力扣(LeetCode)
class Solution(object):
def buildTree(self, preorder, inorder):
if not preorder or not inorder:
return
root = TreeNode(preorder[0])
index = inorder.index(root.val)
root.left = self.buildTree(preorder[1:1+index], inorder[:index])
root.right = self.buildTree(preorder[1+index:], inorder[1+index:])
return root
13. 路径总和 III
原题链接:437. 路径总和 III - 力扣(LeetCode)
# self.right = right
class Solution(object):
def pathSum(self, root, targetSum):
if not root:
return 0
def dfs(root, targetSum):
if not root:
return 0
if root.val == targetSum:
ans = 1
else:
ans =0
return ans + dfs(root.left, targetSum-root.val) + dfs(root.right, targetSum-root.val) # 根节点+遍历左子树+遍历右子树
return dfs(root, targetSum) + self.pathSum(root.left, targetSum) + self.pathSum(root.right, targetSum) #路径 不需要从根节点开始,也不需要在叶子节点结束
14. 二叉树的最近公共祖先
原题链接:236. 二叉树的最近公共祖先 - 力扣(LeetCode)
class Solution(object):
def lowestCommonAncestor(self, root, p, q):
if not root or root==p or root==q:
return root
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
if left and right:
return root
if left:
return left
return right
15. 二叉树中的最大路径和
原题链接:124. 二叉树中的最大路径和 - 力扣(LeetCode)
class Solution(object):
def maxPathSum(self, root):
if not root:
return 0
self.maximum = float('-inf')
def dfs(root):
if not root:
return 0
l_val = dfs(root.left)
r_val = dfs(root.right)
self.maximum = max(self.maximum, l_val + r_val + root.val)
return max(0, max(l_val, r_val) + root.val)
dfs(root)
return self.maximum
二、图论
1. 岛屿数量
原题链接:200. 岛屿数量 - 力扣(LeetCode)
class Solution(object):
def numIslands(self, grid):
m, n = len(grid), len(grid[0])
def dfs(grid, i, j):
grid[i][j] = "0"
for x, y in [[i+1, j], [i-1, j], [i, j+1], [i, j-1]]:
if 0<=x<m and 0<=y<n and grid[x][y]=="1":
grid[x][y] = "0"
dfs(grid, x, y)
res = 0
for i in range(m):
for j in range(n):
if grid[i][j] == "1":
res += 1
dfs(grid, i, j)
return res
2. 腐烂的橘子
原题链接:994. 腐烂的橘子 - 力扣(LeetCode)
class Solution(object):
def orangesRotting(self, grid):
if not grid:
return 0
if 1 not in sum(grid, []):
return 0
m, n = len(grid), len(grid[0])
queue = []
time = 0
for i in range(m):
for j in range(n):
if grid[i][j] == 2:
queue.append([i, j, time])
while queue:
i, j, time = queue.pop(0)
for x, y in [[i+1, j], [i-1, j], [i, j+1], [i, j-1]]:
if 0<=x<m and 0<=y<n and grid[x][y]==1:
grid[x][y] = 2
queue.append([x, y, time+1])
if 1 in sum(grid, []):
return -1
return time
3. 课程表
原题链接:207. 课程表 - 力扣(LeetCode)
# Python3实现本质是找有向无环图(无环:return True; 有环:return Flase)
class Solution:
def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool:
from graphlib import TopologicalSorter as TS
ts = TS()
for curr, pre in prerequisites:
ts.add(curr, pre)
return not ts._find_cycle() # 不存在有向无环图
4. 实现 Trie (前缀树)
原题链接:208. 实现 Trie (前缀树) - 力扣(LeetCode)
class Trie(object):
def __init__(self):
self.lst = []
def insert(self, word):
self.lst.append(word)
def search(self, word):
if word in self.lst:
return True
else: return False
def startsWith(self, prefix):
lp = len(prefix)
for word in self.lst:
if word[:lp] == prefix:
return True
return False
# Your Trie object will be instantiated and called as such:
# obj = Trie()
# obj.insert(word)
# param_2 = obj.search(word)
# param_3 = obj.startsWith(prefix)