【万字长文】Word2Vec计算详解(三)

news2025/1/22 12:49:16

【万字长文】Word2Vec计算详解(三)

写在前面

第三部分介绍Word2Vec模型的两种优化方案。

【万字长文】Word2Vec计算详解(一)markdown行 9000+
【万字长文】Word2Vec计算详解(二)markdown行 12000+
【万字长文】Word2Vec计算详解(三)markdown行 18000+

优化

在原本的Word2Vec模型的 Softmax 层中,对于每一次预测,我们都要计算所有 V V V个单词出现的概率,这在数量级为很大的语料库中,计算的消耗是十分巨大的。下面将介绍两种优化方式,它们均以此为切入点,优化Softmax的计算。

在分层 Softmax中,由于使用了 Huffman 树,我们最多计算 V V V个单词的概率,平均计算为 l o g V logV logV次,相比与原来的 V V V次计算,在数量级巨大时,优化计算十分明显。例如当 V = 1000000 V=1000000 V=1000000 时,在 Softmax 层中,我们将计算 1000000 1000000 1000000 e x e^x ex运算,而 l o g ( 1000000 ) ≈ 14 log(1000000) \approx 14 log(1000000)14 次(Sigmoid运算), V l o g V = 1000000 14 ≈ 72382 \frac{V}{logV} = \frac{1000000}{14} \approx 72382 logVV=14100000072382倍,这个优化十分巨大,我们接下来进入 H-Softmax 的介绍。

分层 Softmax

Hierachical Softmax(分层Softmax)的基本思想就是首先将词典中的每个词按照词频大小构建出一棵 Huffman 树,保证词频较大的词处于相对比较浅的层,词频较低的词相应的处于 Huffman 树较深层的叶子节点,每一个词都处于这棵 Huffman 树上的某个叶子节点。然后我们根据我们所生成的 Huffman 树,我们将从根节点出发,计算并判断结果单词是在左子树的得分大还是在右子树的得分大,进入得分较大的分支所在的下一个节点。递归执行当前节点到达叶子节点时,代表我们找到了预测结果单词。将路径上的得分进行 Sigmoid 转换成概率,我们就可以得到这个概率(得分越高代表概率越大)。

我们本节以 CBOW 模型为例讲述分层 Softmax ,使用了分层 Softmax 进行优化的 CBOW 模型如图下所示。与 CBOW 模型优化前进行对比,可以发现加权平均层以及其之前的层与原来的 CBOW 模型一致。主要的变化是在是在权重输出层和Softmax层,我们将其优化成 H-Softmax 层。我们将在 H-Softmax 层中详细介绍。现在我们回顾一下 CBOW 模型加权平均层及其之前层的处理。

在这里插入图片描述

预处理

简单介绍模型输入前的处理。给定一个语料库 text,我们要将其处理成能够用于模型输入的 one-hot 向量。首先去重,然后将单词与标点符号按读入顺序放入集合corpus,并另外存储一份单词与索引直接查询的字典,word_to_id 和 id_to_word。

随后是将单词集合corpus也就是词汇表Vocabulary转换为 one-hot 表示

模型输入

在模型中,将一个词的上下文词表示为独热编码(one-hot encoding)向量然后并作为模型的一个输入。上下文的词的多少取决于窗口大小 C C C,于是我们的输入 X = ( x i − c , x i − c + 1 , … , x i − 1 ∈ R V × 2 C , x i + 1 , … , x i + c ) X = (x_{i-c}, x_{i-c + 1}, \dots, x_{i - 1} \in \mathbb{R}^{V \times 2C}, x_{i + 1}, \dots, x_{i + c}) X=(xic,xic+1,,xi1RV×2C,xi+1,,xi+c) x i x_i xi为目标单词,其中 x i ∈ R V × 1 x_i \in \mathbb{R}^{V \times 1} xiRV×1

权重输入层

在这一层,我们将目标单词 x i x_i xi的上下文的 one-hot 编码与隐藏层的权重输入矩阵 W W W 相乘再加上置偏值 b ∈ R D × 1 b \in \mathbb{R}^{D \times 1} bRD×1 得到 x j ′ x_j' xj,即 X j ′ = W X j + b X_j' = W X_j + b Xj=WXj+b, 其中 x j ′ ∈ R D × 1 x_j' \in \mathbb{R}^{D \times 1} xjRD×1 j = ( i − C , i − C + 1 , … , i − 1 , i + 1 , … , i + C ) j = (i-C,i-C+1,\dots,i-1,i+1,\dots,i+C) j=(iC,iC+1,,i1,i+1,,i+C)。写成矩阵的形式为

X ′ = W X + b X' = WX+b X=WX+b

加权平均层

我们将输入层得到的所有 x j ′ x_j' xj 进行加权平均得到 h h h

h = ∑ j = i − C , j ≠ i i + C x j ′ = 1 2 C ( x i − C ′ + … x i − 1 ′ + x i + 1 ′ + ⋯ + x i + C ′ ) h = \sum\limits^{i+C}_{j = i-C,j \ne i} x_j'= \frac{1}{2C}(x_{i-C}' + \dots x_{i - 1}' + x_{i + 1}' + \dots + x_{i + C}') h=j=iC,j=ii+Cxj=2C1(xiC+xi1+xi+1++xi+C)

其中 C C C 是窗口大小, h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1。写成矩阵的形式为

h = 1 2 C X ′ j ⃗ h = \frac{1}{2C} X'\vec{j} h=2C1Xj
其中 j ⃗ = [ 1 , 1 , … , 1 , 1 ] ∈ R 2 C × 1 \vec{j}=\left[1,1,\dots,1,1\right] \in \mathbb{R}^{2C \times 1} j =[1,1,,1,1]R2C×1

接下来我们开始进入真正的分层 Softmax 模块,即 分层Softmax 层。分层 Softmax 层 的输入是隐藏层的向量 h h h,输入是预测的单词。

分层 Softmax 预处理

在正式进入 分层Softmax层 前我们还有一些预处理操作,即为词汇表构建 Huffman 树。Huffman 树的基础是词汇表中的词频,于是我们简单修改 preprocess函数,统计出词汇表中的每个单词的词频,并加入到返回值中,具体代码见附录优化中的分层Softmax预处理。

我们的目标是通过数组下标为单词索引,值为词频的数组word_count(由preprocess函数生成,在返回值中),来构建 Huffman 树,并生成每个单词对应的路径序列。Huffman 树的构建和路径序列生成的过程步骤如下。

1.初始化优先队列
给定单词集合 { w 1 , w 2 , … , w n } \{w_1, w_2, \ldots, w_n\} {w1,w2,,wn} 与它们的词频 { f ( w 1 ) , f ( w 2 ) , … , f ( w n ) } \{f(w_1), f(w_2), \ldots, f(w_n)\} {f(w1),f(w2),,f(wn)},初始化优先队列 Q Q Q,使所有节点按词频从小到大排序。每个节点 N i N_i Ni 表示单词 w i w_i wi 和其词频 f ( w i ) f(w_i) f(wi)
定义节点 N i N_i Ni如下:
N i = ( w i , f ( w i ) ) N_i = (w_i, f(w_i)) Ni=(wi,f(wi))
初始化优先队列 Q Q Q
Q = min-heap ( { ( w 1 , f ( w 1 ) ) , ( w 2 , f ( w 2 ) ) , … , ( w n , f ( w n ) ) } ) Q = \text{min-heap}(\{ (w_1, f(w_1)), (w_2, f(w_2)), \ldots, (w_n, f(w_n)) \}) Q=min-heap({(w1,f(w1)),(w2,f(w2)),,(wn,f(wn))})

2.构建Huffman树
重复以下步骤直到 Q Q Q 中只剩一个节点:
(1) 从 Q Q Q 中取出两个词频最小的节点 N min1 N_{\text{min1}} Nmin1 N min2 N_{\text{min2}} Nmin2。(通常情况下,存在两个节点值相同的情况,这时我们按照队列Q的入队顺序进行提取即可)
(2) 创建一个新的内部节点 N new N_{\text{new}} Nnew,其词频为两子节点词频之和:
N new = ( N min1 , N min2 , f ( N min1 ) + f ( N min2 ) ) N_{\text{new}} = (N_{\text{min1}}, N_{\text{min2}}, f(N_{\text{min1}}) + f(N_{\text{min2}})) Nnew=(Nmin1,Nmin2,f(Nmin1)+f(Nmin2))
(3) 将 N new N_{\text{new}} Nnew 添加到 Q Q Q,移除 N min1 N_{\text{min1}} Nmin1 N min2 N_{\text{min2}} Nmin2

3.生成路径序列
为每个单词 w i w_i wi 生成从根节点到叶子节点的路径序列 P ( w i ) P(w_i) P(wi)。路径中向左用“0”表示,向右用“1”表示:
P ( w i ) = { d 1 , d 2 , … , d k } P(w_i) = \{d_1, d_2, \ldots, d_k\} P(wi)={d1,d2,,dk}
其中 d j d_j dj 表示第 j j j 次向左或向右的决策(“0”表示左,“1”表示右)。

根据上面的步骤,Python的代码实现见附录优化中的构建Huffman树程序代码。

至此我们完成了分层 Softmax 层的预处理,即得到了我们的Huffman树以及对应的路径信息,下面正式进入 分层Softmax 层的介绍。

分层 Softmax 层

对于预处理得到的 Huffman 树,我们为每一个非叶子节点设置一个参数向量 θ ∈ R D × 1 \theta \in \mathbb{R}^{D \times 1} θRD×1 。对于每个节点的输入均是隐藏层的 h h h,将对应的 θ \theta θ h T h^T hT 相乘,加上置偏值 b ′ b' b,然后取 Sigmoid 得到正向的概率 P i 1 P_i^1 Pi1。那么负向的概率就是 P i 0 = 1 − P i 1 P_i^0 = 1 - P_i^1 Pi0=1Pi1

正向概率: P i 1 = σ ( h T θ i + b i ′ ) = 1 1 + e − h T θ i + b i ′ 正向概率: P_i^1 = \sigma(h^T\theta_i + b_i') = \frac{1}{1 + e^{-h^T\theta_i + b_i'}} 正向概率:Pi1=σ(hTθi+bi)=1+ehTθi+bi1
负向概率: P i 0 = 1 − σ ( h T θ i + b i ′ ) 负向概率: P_i^0 = 1 - \sigma(h^T\theta_i + b_i') 负向概率:Pi0=1σ(hTθi+bi)

我们依据计算的正向概率和负向概率,按 Huffman 树从根节点到叶子节点单词的路径上的概率 P i d P_i^{d} Pid进行连乘可以得到每个叶子节点单词的概率,即

P ( w o r d i ) = ∏ i = 1 l P i d P(word_i) = \prod_{i = 1}^{l} P_i^{d} P(wordi)=i=1lPid
其中 l l l 为路径长度, d d d 只能从0或1中选,即 d ∈ { 0 , 1 } d \in \{0,1\} d{0,1}

然后我们取最大概率的单词作为预测的单词结果。

简单的分层Softmax例子

下面按照原来 CBOW 模型中的例子继续详细介绍下优化后分层 Softmax层 模型预测部分的计算过程。

首先我们的语料库为 text = ‘The cat plays in the garden, and the cat chases the mouse in the garden.’。窗口大小 C = 2 C = 2 C=2,隐藏层的维数 D = 4 D = 4 D=4 ,并且要给定 plays 的上下文进行预测。我们可以得到模型输入是 x 0 x_0 x0 x 1 x_1 x1 x 3 x_3 x3 x 0 x_0 x0,对应单词分别为 the、cat、in、the。则 X = ( x 0 , x 1 , x 3 , x 0 ) X = (x_0, x_1, x_3, x_0) X=(x0,x1,x3,x0),在下方展示。 我们对输入权重权重矩阵 W W W 进行初始化, W W W初始值与原来的CBOW模型中的一致,我们有如下的信息。

X = ( x 0 , x 1 , x 3 , x 0 ) = [ 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] , b = [ 0.0513 − 1.1577 0.8167 0.4336 ] X = (x_0, x_1, x_3, x_0) = \begin{bmatrix} 1&0&0&1\\ 0&1&0&0\\ 0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{bmatrix} , b = \begin{bmatrix} 0.0513 \\ -1.1577\\ 0.8167 \\ 0.4336 \end{bmatrix} X=(x0,x1,x3,x0)= 1000000000010000000000010000001000000000 ,b= 0.05131.15770.81670.4336

W = [ − 0.2047 0.4789 − 0.5194 − 0.5557 1.9657 1.3934 0.0929 0.2817 0.769 1.2464 1.0071 − 1.2962 0.2749 0.2289 1.3529 0.8864 − 2.0016 − 0.3718 1.669 − 0.4385 − 0.5397 0.4769 3.2489 − 1.0212 − 0.577 0.1241 0.3026 0.5237 0.0009 1.3438 − 0.7135 − 0.8311 − 2.3702 − 1.8607 − 0.8607 0.5601 − 1.2659 0.1198 − 1.0635 0.3328 ] W = \begin{bmatrix} -0.2047 & 0.4789 & -0.5194 & -0.5557 & 1.9657 & 1.3934 & 0.0929 & 0.2817 & 0.769 & 1.2464\\ 1.0071 & -1.2962 & 0.2749 & 0.2289 & 1.3529 & 0.8864 & -2.0016 & -0.3718 & 1.669 & -0.4385\\ -0.5397 & 0.4769 & 3.2489 & -1.0212 & -0.577 & 0.1241 & 0.3026 & 0.5237 & 0.0009 & 1.3438\\ -0.7135 & -0.8311 & -2.3702 & -1.8607 & -0.8607 & 0.5601 & -1.2659 & 0.1198 & -1.0635 & 0.3328 \end{bmatrix} W= 0.20471.00710.53970.71350.47891.29620.47690.83110.51940.27493.24892.37020.55570.22891.02121.86071.96571.35290.5770.86071.39340.88640.12410.56010.09292.00160.30261.26590.28170.37180.52370.11980.7691.6690.00091.06351.24640.43851.34380.3328

接下来是权重输入层的运算。我们将 W W W X X X 进行矩阵乘法运算再加上置偏值 b b b,计算得到 X ′ X' X

X ′ = W X + b = [ − 0.1533 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 1.2936 − 0.2044 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] X' = WX + b = \begin{bmatrix} -0.1533 & 0.5302 & -0.5043 & -0.1533\\ -0.1506& -2.4539 & -0.9288& -0.1506\\ 0.277 & 1.2936 & -0.2044 & 0.277 \\ -0.2798 & -0.3974 & -1.427 & -0.2798 \end{bmatrix} X=WX+b= 0.15330.15060.2770.27980.53022.45391.29360.39740.50430.92880.20441.4270.15330.15060.2770.2798

接下来进行加权平均层的计算,也就是将 X ′ X' X每行中的 4 4 4个值进行相加,得到 4 × 1 4 \times 1 4×1 的向量 h h h

h = 1 4 X ′ = 1 4 [ − 0.1533 + 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 + 1.2936 − 0.2044 + 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] = [ − 0.0701 − 0.9209 0.4108 − 0.596 ] h = \frac{1}{4} X' = \frac{1}{4} \begin{bmatrix} -0.1533 + 0.5302 - 0.5043 - 0.1533\\ -0.1506 - 2.4539 -0.9288 -0.1506 \\ 0.277 + 1.2936 - 0.2044 + 0.277\\ -0.2798 -0.3974 -1.427 -0.2798 \end{bmatrix} = \begin{bmatrix} -0.0701\\ -0.9209\\ 0.4108\\ -0.596 \end{bmatrix} h=41X=41 0.1533+0.53020.50430.15330.15062.45390.92880.15060.277+1.29360.2044+0.2770.27980.39741.4270.2798 = 0.07010.92090.41080.596

至此,分层Softmax层 前的准备运算工作已经完成,下面详细介绍 分层Softmax 层的计算。

首先是分层 Softmax 的预处理,我们通过对语料库使用改进的 preprocess 函数处理(参考分层 Softmax 预处理中的preprocess函数代码),我们可以得到词频信息如下表所示。

index0123456789
x i x_i xi x 0 x_0 x0 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6 x 7 x_7 x7 x 8 x_8 x8 x 9 x_9 x9
wordthecatplaysingarden,andchasesmouse.
frequency5212211111

preprocess 函数得到后的结果(词汇表、词频信息)

简单介绍下 Huffman 树的生成的过程,首先将所有节点放入到优先队列中,每次取出两个最小频次的两个索引,例如2、6,我们组成新的节点node1,该节点的频次(权重)为2。同理我们用7、8和5、9组合成node2(权重2)和node3(权重2)节点,此时队列中最小的频次(权重)为2。我们继续取出节点进行合并,过程依次为将1、3合并为node4(权重4),node2、4合并为node5(权重4),node1、node3合并为node6(权重4),node4、node5合并成node7(权重8),然后将node6和1合并成node8(权重9),最后将node7和node8合并为node9(权重17)得到Huffman树,如下图所示。

样例词频表对应的 Huffman 树

我们规定,对应于每一个非叶子节点,向左子树方向的编码为 0 ,向右子树方向的编码为 1 。根据路径我们可以得到每个单词的路径,如下图。根据下图我们可以的得到路径信息,如下表所示。
Huffman 树 标记路径,左0右1

index0123456789
wordthecatplaysingarden,andchasesmouse.
path11000101100101110001010010101001001

词汇表经过Huffman树处理后对应单词的索引以及的路径信息

由于一共有十个单词,生成对应的 Huffman 树时,有 9 个非叶子节点,我们按顺序将这 9 个非叶子节点标记为 θ 1 ∼ 9 \theta_{1 \sim 9} θ19,并对其以及对应的置偏值 b ′ b' b进行初始化,如下图所示。
Huffman 树 标记非叶子节点为 theta_1 \sim 9

( θ 1 , … , θ 9 ) = [ 0.0296 0.7952 0.1181 − 0.7485 0.5849 0.1526 − 1.5656 − 0.5625 − 0.0326 − 0.929 − 0.4825 − 0.0362 1.0953 0.9809 − 0.5894 1.5817 − 0.5287 0.457 0.9299 − 1.5692 − 1.0224 − 0.4028 0.2204 − 0.1934 0.6691 − 1.6489 − 2.2527 − 1.1668 0.3536 0.7021 − 0.2745 − 0.1391 0.1076 − 0.6065 − 0.417 − 0.017 ] (\theta_1, \dots, \theta_9) = \begin{bmatrix} 0.0296 & 0.7952 & 0.1181 & -0.7485 & 0.5849 & 0.1526 & -1.5656 & -0.5625 & -0.0326 \\ -0.929 & -0.4825 & -0.0362 & 1.0953 & 0.9809 & -0.5894 & 1.5817 & -0.5287 & 0.457 \\ 0.9299 & -1.5692 & -1.0224 & -0.4028 & 0.2204 & -0.1934 & 0.6691 & -1.6489 & -2.2527 \\ -1.1668 & 0.3536 & 0.7021 & -0.2745 & -0.1391 & 0.1076 & -0.6065 & -0.417 & -0.017 \end{bmatrix} (θ1,,θ9)= 0.02960.9290.92991.16680.79520.48251.56920.35360.11810.03621.02240.70210.74851.09530.40280.27450.58490.98090.22040.13910.15260.58940.19340.10761.56561.58170.66910.60650.56250.52871.64890.4170.03260.4572.25270.017

初始化 θ i \theta_i θi 对应位置上的置偏值 b ′ = ( b 1 ′ , b 2 ′ , … , b 9 ′ ) b' = (b_1', b_2', \dots, b_9') b=(b1,b2,,b9)

b ′ = [ − 1.2241 − 1.8008 1.6347 0.989 0.4579 0.5551 1.3067 − 0.4405 − 0.3013 ] b' = \begin{bmatrix} -1.2241 & -1.8008 & 1.6347 & 0.989 & 0.4579 & 0.5551 & 1.3067 & -0.4405 & -0.3013 \end{bmatrix} b=[1.22411.80081.63470.9890.45790.55511.30670.44050.3013]

我们计算对应路径上的 h T h^T hT θ i \theta_i θi 的乘积的结果加上置偏 b i ′ b_i' bi 最后再取 Sigmoid 得到一个概率值 P P P,我们将其标记为正向概率,即 P i 1 = σ ( h T × θ i + b i ′ ) P_i^1 = \sigma(h^T \times \theta_i + b_i') Pi1=σ(hT×θi+bi)。我们依据正向概率计算负向概率 P i 0 P_i^0 Pi0,即 P i 0 = 1 − P i 1 P_i^0 = 1 - P_i^1 Pi0=1Pi1,然后我们按 Huffman 树路径对路径上的概率进行连乘可以得到每个叶子节点的概率,然后我们取最大概率的单词作为预测的单词结果。具体计算例子如下,我们从根节点开始,计算所有的 P i 1 = σ ( h T × θ i + b i ′ ) P_i^1 = \sigma (h^T \times \theta_i + b_i') Pi1=σ(hT×θi+bi) P i 1 = 1 − P i 1 P_i^1 = 1 - P_i^1 Pi1=1Pi1

P 1 1 = σ ( h T × θ 1 + b 1 ′ ) = 0.6696 , P 1 1 = 1 − P 1 1 = 0.3304 P 2 1 = σ ( h T × θ 2 + b 2 ′ ) = 0.0938 , P 2 1 = 1 − P 2 1 = 0.9062 P 3 1 = σ ( h T × θ 3 + b 3 ′ ) = 0.6945 , P 3 1 = 1 − P 3 1 = 0.3055 P 4 1 = σ ( h T × θ 4 + b 4 ′ ) = 0.5077 , P 4 1 = 1 − P 4 1 = 0.4923 P 5 1 = σ ( h T × θ 4 + b 5 ′ ) = 0.4223 , P 5 1 = 1 − P 5 1 = 0.5777 P 6 1 = σ ( h T × θ 6 + b 6 ′ ) = 0.7198 , P 6 1 = 1 − P 6 1 = 0.2802 P 7 1 = σ ( h T × θ 7 + b 7 ′ ) = 0.6447 , P 7 1 = 1 − P 7 1 = 0.3553 P 8 1 = σ ( h T × θ 8 + b 8 ′ ) = 0.4150 , P 8 1 = 1 − P 8 1 = 0.5850 P 9 1 = σ ( h T × θ 9 + b 9 ′ ) = 0.1631 , P 9 1 = 1 − P 9 1 = 0.8369 P_1^1 = \sigma (h^T \times \theta_1 + b_1') = 0.6696, P_1^1 = 1 - P_1^1 = 0.3304\\ P_2^1 = \sigma (h^T \times \theta_2 + b_2') = 0.0938, P_2^1 = 1 - P_2^1 = 0.9062\\ P_3^1 = \sigma (h^T \times \theta_3 + b_3') = 0.6945, P_3^1 = 1 - P_3^1 = 0.3055\\ P_4^1 = \sigma (h^T \times \theta_4 + b_4') = 0.5077, P_4^1 = 1 - P_4^1 = 0.4923 \\ P_5^1 = \sigma (h^T \times \theta_4 + b_5') = 0.4223, P_5^1 = 1 - P_5^1 = 0.5777\\ P_6^1 = \sigma (h^T \times \theta_6 + b_6') = 0.7198, P_6^1 = 1 - P_6^1 = 0.2802\\ P_7^1 = \sigma (h^T \times \theta_7 + b_7') = 0.6447, P_7^1 = 1 - P_7^1 = 0.3553\\ P_8^1 = \sigma (h^T \times \theta_8 + b_8') = 0.4150, P_8^1 = 1 - P_8^1 = 0.5850\\ P_9^1 = \sigma (h^T \times \theta_9 + b_9') = 0.1631, P_9^1 = 1 - P_9^1 = 0.8369 P11=σ(hT×θ1+b1)=0.6696P11=1P11=0.3304P21=σ(hT×θ2+b2)=0.0938P21=1P21=0.9062P31=σ(hT×θ3+b3)=0.6945P31=1P31=0.3055P41=σ(hT×θ4+b4)=0.5077P41=1P41=0.4923P51=σ(hT×θ4+b5)=0.4223P51=1P51=0.5777P61=σ(hT×θ6+b6)=0.7198P61=1P61=0.2802P71=σ(hT×θ7+b7)=0.6447P71=1P71=0.3553P81=σ(hT×θ8+b8)=0.4150P81=1P81=0.5850P91=σ(hT×θ9+b9)=0.1631P91=1P91=0.8369

接下来计算每个单词的概率,对路径上的 P i d P_i^d Pid进行连乘,即 P ( w o r d i ) = ∏ i = 1 l P i d P(word_i) = \prod_{i = 1}^{l} P_i^{d} P(wordi)=i=1lPid,具体计算过程为

P ( t h e ) = ∏ i = 1 2 P i d = P 1 1 × P 2 1 = 0.4650 P ( c a t ) = ∏ i = 1 3 P i d = P 1 0 × P 2 0 × P 3 0 = 0.1473 P ( p l a y s ) = ∏ i = 1 4 P i d = P 1 1 × P 2 0 × P 3 1 × P 4 1 = 0.02401 P ( i n ) = ∏ i = 1 3 P i d = P 1 0 × P 2 0 × P 3 1 = 0.1520 P ( g a r d e n ) = ∏ i = 1 3 P i d = P 1 0 × P 2 1 × P 3 1 = 0.0130 P ( , ) = ∏ i = 1 4 P i d = P 1 1 × P 2 0 × P 3 0 × P 4 0 = 0.0335 P ( a n d ) = ∏ i = 1 4 P i d = P 1 1 × P 2 0 × P 3 1 × P 4 0 = 0.1232 P ( c h a s e s ) = ∏ i = 1 4 P i d = P 1 0 × P 2 1 × P 3 0 × P 4 1 = 0.0115 P ( m o u s e ) = ∏ i = 1 4 P i d = P 1 0 × P 2 1 × P 3 0 × P 4 0 = 0.0063 P ( . ) = ∏ i = 1 4 P i d = P 1 1 × P 2 0 × P 3 0 × P 4 1 = 0.0237 P(the) = \prod_{i = 1}^{2} P_i^{d} = P_1^{1} \times P_2^{1} = 0.4650\\ P(cat) = \prod_{i = 1}^{3} P_i^{d} = P_1^{0} \times P_2^{0} \times P_3^{0} = 0.1473\\ P(plays) = \prod_{i = 1}^{4} P_i^{d} = P_1^{1} \times P_2^{0} \times P_3^{1} \times P_4^{1} = 0.02401\\ P(in) = \prod_{i = 1}^{3} P_i^{d} = P_1^{0} \times P_2^{0} \times P_3^{1} = 0.1520\\ P(garden) = \prod_{i = 1}^{3} P_i^{d} = P_1^{0} \times P_2^{1} \times P_3^{1} = 0.0130\\ P(,) = \prod_{i = 1}^{4} P_i^{d} = P_1^{1} \times P_2^{0} \times P_3^{0} \times P_4^{0} = 0.0335\\ P(and) = \prod_{i = 1}^{4} P_i^{d} = P_1^{1} \times P_2^{0} \times P_3^{1} \times P_4^{0} = 0.1232\\ P(chases) = \prod_{i = 1}^{4} P_i^{d} = P_1^{0} \times P_2^{1} \times P_3^{0} \times P_4^{1} = 0.0115\\ P(mouse) = \prod_{i = 1}^{4} P_i^{d} = P_1^{0} \times P_2^{1} \times P_3^{0} \times P_4^{0} = 0.0063\\ P(.) = \prod_{i = 1}^{4} P_i^{d} = P_1^{1} \times P_2^{0} \times P_3^{0} \times P_4^{1} = 0.0237\\ P(the)=i=12Pid=P11×P21=0.4650P(cat)=i=13Pid=P10×P20×P30=0.1473P(plays)=i=14Pid=P11×P20×P31×P41=0.02401P(in)=i=13Pid=P10×P20×P31=0.1520P(garden)=i=13Pid=P10×P21×P31=0.0130P(,)=i=14Pid=P11×P20×P30×P40=0.0335P(and)=i=14Pid=P11×P20×P31×P40=0.1232P(chases)=i=14Pid=P10×P21×P30×P41=0.0115P(mouse)=i=14Pid=P10×P21×P30×P40=0.0063P(.)=i=14Pid=P11×P20×P30×P41=0.0237

其中概率最大的值为 0.4650,代表的单词为the,所以预测的结果过单词为the。

下面按照原来模型中的例子继续详细介绍下优化后 分层Softmax 层之后的损失函数计算过程。

损失函数

在层次 Softmax 中使用的损失函数通常是二元交叉熵损失(Binary Cross-Entropy, BCE)。每个非叶节点上的决策可以被视作一个二分类问题——决定是向左还是向右,使用二元交叉熵损失可以衡量事件(向左或向右)的预测概率与实际结果之间的差异。通过计算对应路径上的 h T h^T hT θ i \theta_i θi 的乘积加上置偏值 b i b_i bi 最后再取 Sigmoid 得到概率 p i p_i pi,用 p i p_i pi 与标签来计算二元交叉熵损失。

L i = − [ t i log ⁡ ( p i ) + ( 1 − t i ) log ⁡ ( 1 − p i ) ] \text{L}_i = -[t_i\log(p_i) + (1 - t_i)\log(1 - p_i)] Li=[tilog(pi)+(1ti)log(1pi)]

其中, t i t_i ti 是实际的标签,可以理解为相应节点正确的决策路径。 T = ( t 1 , … , t n ) T = (t_1,\dots, t_n) T=(t1,,tn) 可以表示正确单词在 Huffman 树上对应的路径。 p i p_i pi 是模型预测的概率,当 p i > 0.5 p_i > 0.5 pi>0.5 是表示向右走(编码为 1), p i < 0.5 p_i < 0.5 pi<0.5 是表示向左走(编码为0)。

每个二分类过程都可以得到一个损失 L i L_i Li,我们对其求和得到总的损失Loss。

Loss = ∑ i = 1 n L i \text{Loss} = \sum\limits^{n}_{i = 1} L_i Loss=i=1nLi

其中 n n n 为路径的长度,通过计算路径上每次决策的损失并累加得到最终的损失。

分层 Softmax 小结

1.H-Softmax层的输入是 h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1,输出是对应的预测的单词的路径
T ∈ R k × 1 T \in \mathbb{R}^{k \times 1} TRk×1

和对应路径上的概率序列
P = ( p 1 , p 2 , … , p k ) P = (p_1, p_2, \dots, p_k) P=(p1,p2,,pk)
其中 k k k 为所预测单词的路径长度。

2.预测结果单词为Huffman树路径到叶子节点之间经过的 P i d P_i^d Pid连乘结果得到的概率所概率最大的位置所对应的单词,即
P ( w o r d i ) = ∏ i = 1 l P i d P(word_i) = \prod_{i = 1}^{l} P_i^{d} P(wordi)=i=1lPid
值最大对应索引的单词,其中 l l l 为路径长度, d d d 只能从0或1中选,即 d ∈ { 0 , 1 } d \in \{0,1\} d{0,1}。损失函数使用概率序列 P P P和路径(标签)来计算交叉熵损失。

通过上面的解释,我们知道了分层Softmax以修改原来Word2Vec模型中的多分类Softmax的拓扑结构为多个二分类Huffuman树结构的形式减少了计算量,下面我们将介绍另一种形式的优化----负采样。负采样以训练技巧(trick)的方式对Softmax进行优化,它不再使用(复杂的)Huffman 树,而是利用随机取特定数量的负样例,从而减少计算量,下面正式进行介绍。

负采样

负采样(Negative Sampling)的基本思想是从一个概率分布中选择少数几个负样本来参与每次的训练,而不是使用全体负样本。在原本的Word2Vec模型中,在Softmax层中,我们会进行 V V V e x e^x ex运算,这个计算量在 V V V较大时,计算的时间复杂度特别高,而当我们使用少数几个样本作为负样本,例如我们令负样本数 k = 5 k = 5 k=5(通常 k k k 5 ∼ 20 5 \sim 20 520),这将把计算时间复杂度将为常数级。例如当 V = 1000000 V=1000000 V=1000000,传统的Word2Vec模型在Softmax层会进行 1000000 1000000 1000000次运算,而在优化后的负采样中只会进行 5 5 5次(假设 k = 5 k = 5 k=5),这将提升 1000000 / 2 = 500000 1000000 / 2 = 500000 1000000/2=500000倍的运算效率!

在负采样中,我们通常不使用Softmax多分类,而是使用Sigmoid函数进行二分类。我们通常将这 k k k个负例分别与正例使用 Sigmoid函数做二分类计算获得每个样例的得分并组合成得分向量,最后使用Softmax归一化得分得到样例的概率值。

通过这种方式,负采样帮助模型专注于最重要的信息,避免了在大量不相关数据上浪费计算资源。分层Softmax和负采样是可以相互替代的作为Word2Vec的一种加速计算的方式。

我们本节以 CBOW 模型为例讲述负采样 ,使用了负采样进行优化的 CBOW 模型如下图所示。与 CBOW 模型优化前进行对比,可以发现加权平均层以及其之前的层与原来的 CBOW 模型一致。主要的变化是在是在权重输出层和Softmax层,我们将其优化成 负采样层。我们将在 负采样 层中详细介绍。现在我们回顾一下 CBOW 模型加权平均层及其之前层的处理。

使用了负采样 后 CBOW 的模型结构

预处理

简单介绍模型输入前的处理。给定一个语料库 text,我们要将其处理成能够用于模型输入的 one-hot 向量。首先去重,然后将单词与标点符号按读入顺序放入集合corpus,并另外存储一份单词与索引直接查询的字典,word_to_id 和 id_to_word。

随后是将单词集合corpus也就是词汇表Vocabulary转换为 one-hot 表示

模型输入

在模型中,将一个词的上下文词表示为独热编码(one-hot encoding)向量然后并作为模型的一个输入。上下文的词的多少取决于窗口大小 C C C,于是我们的输入 X = ( x i − c , x i − c + 1 , … , x i − 1 ∈ R V × 2 C , x i + 1 , … , x i + c ) X = (x_{i-c}, x_{i-c + 1}, \dots, x_{i - 1} \in \mathbb{R}^{V \times 2C}, x_{i + 1}, \dots, x_{i + c}) X=(xic,xic+1,,xi1RV×2C,xi+1,,xi+c) x i x_i xi为目标单词,其中 x i ∈ R V × 1 x_i \in \mathbb{R}^{V \times 1} xiRV×1

权重输入层

在这一层,我们将目标单词 x i x_i xi的上下文的 one-hot 编码与隐藏层的权重输入矩阵 W W W 相乘再加上置偏值 b ∈ R D × 1 b \in \mathbb{R}^{D \times 1} bRD×1 得到 x j ′ x_j' xj,即 X j ′ = W X j + b X_j' = W X_j + b Xj=WXj+b, 其中 x j ′ ∈ R D × 1 x_j' \in \mathbb{R}^{D \times 1} xjRD×1 j = ( i − C , i − C + 1 , … , i − 1 , i + 1 , … , i + C ) j = (i-C,i-C+1,\dots,i-1,i+1,\dots,i+C) j=(iC,iC+1,,i1,i+1,,i+C)。写成矩阵的形式为

X ′ = W X + b X' = WX+b X=WX+b

加权平均层

我们将输入层得到的所有 x j ′ x_j' xj 进行加权平均得到 h h h

h = ∑ j = i − C , j ≠ i i + C x j ′ = 1 2 C ( x i − C ′ + … x i − 1 ′ + x i + 1 ′ + ⋯ + x i + C ′ ) h = \sum\limits^{i+C}_{j = i-C,j \ne i} x_j'= \frac{1}{2C}(x_{i-C}' + \dots x_{i - 1}' + x_{i + 1}' + \dots + x_{i + C}') h=j=iC,j=ii+Cxj=2C1(xiC+xi1+xi+1++xi+C)

其中 C C C 是窗口大小, h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1。写成矩阵的形式为

h = 1 2 C X ′ j ⃗ h = \frac{1}{2C} X'\vec{j} h=2C1Xj
其中 j ⃗ = [ 1 , 1 , … , 1 , 1 ] ∈ R 2 C × 1 \vec{j}=\left[1,1,\dots,1,1\right] \in \mathbb{R}^{2C \times 1} j =[1,1,,1,1]R2C×1

接下来我们开始进入真正的负采样 模块,即 “负采样” 层。“负采样” 层 的输入是隐藏层的向量 h h h

负采样层

Word2Vec中使用负采样,只是通过优化计算改善了词向量的质量,而并没有改变预测的方法,在预测过程中,我们通常将 Word2Vec 模型中隐藏层的向量 h h h 乘成正例的权重输出矩阵 θ 1 \theta_1 θ1,即 S 1 = θ 1 × h + b 1 ′ S_1 = \theta_1 \times h + b_1' S1=θ1×h+b1,得到我们需要预测单词的得分向量 S 1 S_1 S1,然后使用Softmax将得分向量转换为概率,即 P = S o f t m a x ( S 1 ) P = Softmax(S_1) P=Softmax(S1)最后将最大概率位置的值设为1,其他位置设为0,得到对应的单词的one-hot表示,最后得到one-hot向量的相应的单词。

简单的负采样例子

以Word2Vec中,前面的CBOW模型为例子进行解释。

首先我们的语料库为 text = ‘The cat plays in the garden, and the cat chases the mouse in the garden.’。窗口大小 C = 2 C = 2 C=2,隐藏层的维数 D = 4 D = 4 D=4 ,并且要给定 plays 的上下文进行预测。我们可以得到模型输入是 x 0 x_0 x0 x 1 x_1 x1 x 3 x_3 x3 x 0 x_0 x0,对应单词分别为 the、cat、in、the。则 X = ( x 0 , x 1 , x 3 , x 0 ) X = (x_0, x_1, x_3, x_0) X=(x0,x1,x3,x0),在下方展示。 我们对输入权重权重矩阵 W W W 进行初始化, W W W初始值与原来的CBOW模型中的一致,我们有如下的信息。

X = ( x 0 , x 1 , x 3 , x 0 ) = [ 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] , b = [ 0.0513 − 1.1577 0.8167 0.4336 ] X = (x_0, x_1, x_3, x_0) = \begin{bmatrix} 1&0&0&1\\ 0&1&0&0\\ 0&0&0&0\\ 0&0&1&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&0&0&0 \end{bmatrix} , b = \begin{bmatrix} 0.0513 \\ -1.1577\\ 0.8167 \\ 0.4336 \end{bmatrix} X=(x0,x1,x3,x0)= 1000000000010000000000010000001000000000 ,b= 0.05131.15770.81670.4336

W = [ − 0.2047 0.4789 − 0.5194 − 0.5557 1.9657 1.3934 0.0929 0.2817 0.769 1.2464 1.0071 − 1.2962 0.2749 0.2289 1.3529 0.8864 − 2.0016 − 0.3718 1.669 − 0.4385 − 0.5397 0.4769 3.2489 − 1.0212 − 0.577 0.1241 0.3026 0.5237 0.0009 1.3438 − 0.7135 − 0.8311 − 2.3702 − 1.8607 − 0.8607 0.5601 − 1.2659 0.1198 − 1.0635 0.3328 ] W = \begin{bmatrix} -0.2047 & 0.4789 & -0.5194 & -0.5557 & 1.9657 & 1.3934 & 0.0929 & 0.2817 & 0.769 & 1.2464\\ 1.0071 & -1.2962 & 0.2749 & 0.2289 & 1.3529 & 0.8864 & -2.0016 & -0.3718 & 1.669 & -0.4385\\ -0.5397 & 0.4769 & 3.2489 & -1.0212 & -0.577 & 0.1241 & 0.3026 & 0.5237 & 0.0009 & 1.3438\\ -0.7135 & -0.8311 & -2.3702 & -1.8607 & -0.8607 & 0.5601 & -1.2659 & 0.1198 & -1.0635 & 0.3328 \end{bmatrix} W= 0.20471.00710.53970.71350.47891.29620.47690.83110.51940.27493.24892.37020.55570.22891.02121.86071.96571.35290.5770.86071.39340.88640.12410.56010.09292.00160.30261.26590.28170.37180.52370.11980.7691.6690.00091.06351.24640.43851.34380.3328

接下来是权重输入层的运算。我们将 W W W X X X 进行矩阵乘法运算再加上置偏值 b b b,计算得到 X ′ X' X

X ′ = W X + b = [ − 0.1533 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 1.2936 − 0.2044 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] X' = WX + b = \begin{bmatrix} -0.1533 & 0.5302 & -0.5043 & -0.1533\\ -0.1506& -2.4539 & -0.9288& -0.1506\\ 0.277 & 1.2936 & -0.2044 & 0.277 \\ -0.2798 & -0.3974 & -1.427 & -0.2798 \end{bmatrix} X=WX+b= 0.15330.15060.2770.27980.53022.45391.29360.39740.50430.92880.20441.4270.15330.15060.2770.2798

接下来进行加权平均层的计算,也就是将 X ′ X' X每行中的 4 4 4个值进行相加,得到 4 × 1 4 \times 1 4×1 的向量 h h h

h = 1 4 X ′ = 1 4 [ − 0.1533 + 0.5302 − 0.5043 − 0.1533 − 0.1506 − 2.4539 − 0.9288 − 0.1506 0.277 + 1.2936 − 0.2044 + 0.277 − 0.2798 − 0.3974 − 1.427 − 0.2798 ] = [ − 0.0701 − 0.9209 0.4108 − 0.596 ] h = \frac{1}{4} X' = \frac{1}{4} \begin{bmatrix} -0.1533 + 0.5302 - 0.5043 - 0.1533\\ -0.1506 - 2.4539 -0.9288 -0.1506 \\ 0.277 + 1.2936 - 0.2044 + 0.277\\ -0.2798 -0.3974 -1.427 -0.2798 \end{bmatrix} = \begin{bmatrix} -0.0701\\ -0.9209\\ 0.4108\\ -0.596 \end{bmatrix} h=41X=41 0.1533+0.53020.50430.15330.15062.45390.92880.15060.277+1.29360.2044+0.2770.27980.39741.4270.2798 = 0.07010.92090.41080.596

至此,我们正式进入负采样,并将介绍是如何计算出预测单词的。

我们初始化正例的权重 θ 1 \theta_1 θ1,然后进行运算 S c o r e = θ 1 × h Score = \theta_1 \times h Score=θ1×h
S c o r e = θ 1 × h = [ 0.0296 0.7952 0.1181 − 0.7485 0.5849 0.1526 − 1.5656 − 0.5625 − 0.0326 − 0.929 − 0.4825 − 0.0362 1.0953 0.9809 − 0.5894 1.5817 − 0.5287 0.457 0.9299 − 1.5692 − 1.0224 − 0.4028 0.2204 − 0.1934 0.6691 − 1.6489 − 2.2527 − 1.1668 0.3536 0.7021 − 0.2745 − 0.1391 0.1076 − 0.6065 − 0.417 − 0.017 − 1.2241 − 1.8008 1.6347 0.989 ] × [ − 0.0701 − 0.9209 0.4108 − 0.596 ] = [ − 0.2397 − 0.4894 0.6811 − 2.1649 0.9334 0.6484 1.2415 − 0.7012 0.3898 1.8262 ] Score = \theta_1 \times h = \begin{bmatrix} 0.0296 & 0.7952 & 0.1181 & -0.7485 \\ 0.5849 & 0.1526 & -1.5656 & -0.5625 \\ -0.0326 & -0.929 & -0.4825 & -0.0362 \\ 1.0953 & 0.9809 & -0.5894 & 1.5817 \\ -0.5287 & 0.457 & 0.9299 & -1.5692 \\ -1.0224 & -0.4028 & 0.2204 & -0.1934 \\ 0.6691 & -1.6489 & -2.2527 & -1.1668 \\ 0.3536 & 0.7021 & -0.2745 & -0.1391 \\ 0.1076 & -0.6065 & -0.417 & -0.017 \\ -1.2241 & -1.8008 & 1.6347 & 0.989 \end{bmatrix} \times \begin{bmatrix} -0.0701\\ -0.9209\\ 0.4108\\ -0.596 \end{bmatrix}= \begin{bmatrix} -0.2397 \\ -0.4894 \\ 0.6811 \\ -2.1649 \\ 0.9334 \\ 0.6484 \\ 1.2415 \\ -0.7012 \\ 0.3898 \\ 1.8262 \end{bmatrix} Score=θ1×h= 0.02960.58490.03261.09530.52871.02240.66910.35360.10761.22410.79520.15260.9290.98090.4570.40281.64890.70210.60651.80080.11811.56560.48250.58940.92990.22042.25270.27450.4171.63470.74850.56250.03621.58171.56920.19341.16680.13910.0170.989 × 0.07010.92090.41080.596 = 0.23970.48940.68112.16490.93340.64841.24150.70120.38981.8262

得分最高的值为 1.8262 1.8262 1.8262,也就是索引为 9 9 9 的单词 ‘.’。

以上就是使用了负采样的CBOW模型的预测过程的计算,预测的过程比较简单,而训练,即损失函数的计算过程会复杂一些,我们接着上面CBOW模型的例子介绍损失函数的计算过程。

损失函数

使用了负采样的Word2Vec模型的损失函数的计算包括两个部分,一是正例损失的计算,二是负例损失的计算。在使用负采样的Word2Vec模型中,预测单词时,只用到了正例的权重输出矩阵 θ 1 \theta_1 θ1,但在计算损失时,我们需要同时考虑正例和负例的的损失。

正例损失的计算:在预测过程中,我们计算了单词的得分向量,也就是 S 1 = θ 1 h + b 1 ′ S_1 = \theta_1h + b_1' S1=θ1h+b1。我们使用交叉熵损失计算损失,即

L o s s = − [ t 1 × l o g ( P 1 ) + t 2 × l o g ( P 2 ) + ⋯ + t V − 1 × l o g ( P V − 1 ) + t V × l o g ( P V ) ] \begin{split} Loss & = -\left[t_1 \times log(P_1) + t_2 \times log(P_2) + \dots + t_{V-1} \times log(P_{V-1}) + t_V \times log(P_V) \right] \end{split} Loss=[t1×log(P1)+t2×log(P2)++tV1×log(PV1)+tV×log(PV)]

其中 T 1 T_1 T1是正确的标签,即 T 1 = ( t 1 , t 2 , … , t V ) T T_1 = (t_1, t_2, \dots, t_V)^T T1=(t1,t2,,tV)T P P P是每个单词对应的概率,即 P = ( P 1 , P 2 , … , P V ) P = (P_1,P_2, \dots, P_V) P=(P1,P2,,PV),此处我们进行优化。在 T T T中,由于只有正确索引位置为为 1 1 1,在进行交叉熵损失运算时,只会保留正确索引位置单词的得分概率,于是我们将得分向量中正确的得分直接取出,记为 S 1 = ( θ 1 h ) T T 1 S_1 = (\theta_1h)^TT_1 S1=(θ1h)TT1

随后我们将得分转换为概率,由于此处均为二分类问题(即预测单词是否为目标单词),我们使用 S i g m o i d Sigmoid Sigmoid函数将得分转换正例的概率 P 1 ∈ R P_1 \in R P1R,最后应用于交叉熵损失函数,即

P 1 = σ ( S 1 ) = σ ( ( θ 1 h + b 1 ′ ) T T 1 ) = 1 1 + e − ( ( θ 1 h + b 1 ′ ) T T 1 ) P_1 = \sigma(S_1) = \sigma((\theta_1h + b_1')^TT_1) = \frac{1}{1 + e^{-((\theta_1h + b_1')^TT_1)}} P1=σ(S1)=σ((θ1h+b1)TT1)=1+e((θ1h+b1)TT1)1

L o s s + = − l o g ( P 1 ) = − l o g ( 1 1 + e − ( ( θ 1 h + b 1 ′ ) T T 1 ) ) Loss_+ = - log(P_1) = -log(\frac{1}{1 + e^{-((\theta_1h+ b_1')^TT_1)}}) Loss+=log(P1)=log(1+e((θ1h+b1)TT1)1)

负例的计算:负例的计算与正例类似,不过我们先需要进行采样,下面先介绍如何对负例进行采样。

从预料库中选取负例的集合,要求词频高的词容易被随机到,而词频低的词不容易被随机到。Word2Vec负采样方法如下:

  1. 我们根据词汇表中的单词,按照词频给出每个单词的概率分布,公式如下为
    f ( w ) = [ c o u n t ( w ) ] 3 4 ∑ i = 1 V [ c o u n t ( i ) ] 3 4 f(w) = \frac{[count(w)]^{\frac{3}{4}}}{\sum_{i = 1}^{V} [count(i)]^{\frac{3}{4}}} f(w)=i=1V[count(i)]43[count(w)]43 其中函数 c o u n t ( i n d e x ) count(index) count(index)计算索引位置为 i n d e x index index位置单词的词频, w w w表示目标单词的索引, V V V为词汇表的大小。 l e n len len函数分母计算了所有单词的一个权重和, f ( w ) f(w) f(w)函数求得索引位置为 w w w位置的单词按照词频在词汇表中概率分布。
  2. 我们根据概率分布进行抽样,若抽到正例则重新抽样,于是我们得到了若干负例。

在Word2Vec原文中,数据量较大时,我们通常使用的负例个数 k k k 通常为5,当数据量较小时,则通常为 5 ∼ 20 5 \sim 20 520个。

通过采样后,我们得到了负样本,下面介绍负例的计算。对于采样出的负例,我们计算对应的得分之后将其取负号再使用 S i g m o i d Sigmoid Sigmoid 函数,然后使用原来计算正例的方式进行计算。考虑负例的权重输出函数 ,我们将负例的权重矩阵 θ 0 \theta_0 θ0与隐藏层向量 h h h相乘得到单词的得分向量,取出分别出采样单词对应的得分,即 S 0 , i = ( θ 0 h + b 0 ′ ) T T 0 , i S_{0,i} = (\theta_0h + b_0')^TT_{0,i} S0,i=(θ0h+b0)TT0,i,其中 T 0 , i T_{0,i} T0,i是取出的负样例中,对应负样例的标签(one-hot向量), i i i是负样例标签的索引,即负采样采样出负样例中的第几个,且 i ∈ 1 , 2 , … , k i \in {1,2,\dots, k} i1,2,,k k k k为负样例个数。随后对 S 0 , i S_{0,i} S0,i 取负号后使用 S i g m o i d Sigmoid Sigmoid 函数得到负样例概率 P 0 , i P_{0,i} P0,i,即 P 0 , i = σ ( − S 0 , i ) P_{0,i} = \sigma(-S_{0,i}) P0,i=σ(S0,i),然后将所有的概率取使用交叉熵损失计算方法得到负样例的损失。

P 0 , i = σ ( S 0 , i ) = σ ( ( θ 0 h + b 0 ′ ) T T 0 , i ) = 1 1 + e − ( ( θ 0 h + b 0 ′ ) T T 0 , i ) P_{0,i} = \sigma(S_{0,i}) = \sigma((\theta_0h + b_0')^TT_{0,i}) = \frac{1}{1 + e^{-((\theta_0h + b_0')^TT_{0,i})}} P0,i=σ(S0,i)=σ((θ0h+b0)TT0,i)=1+e((θ0h+b0)TT0,i)1

Loss − = − ∑ i = 1 k Loss − , i = − ∑ i = 1 k log ⁡ ( P 0 , i ) = − ∑ i = 1 k log ⁡ ( 1 1 + e − ( ( θ 0 h + b 0 ′ ) T T 0 , i ) ) \text{Loss}_-= -\sum_{i = 1}^{k} \text{Loss}_{-,i} = -\sum_{i = 1}^{k} \log(P_{0,i}) = -\sum_{i = 1}^{k}\log(\frac{1}{1 + e^{-((\theta_0h + b_0')^TT_{0,i})}}) Loss=i=1kLoss,i=i=1klog(P0,i)=i=1klog(1+e((θ0h+b0)TT0,i)1)

最后我们将正例损失与负例损失相加得到总的损失。
Loss = Loss + + Loss − \text{Loss} = \text{Loss}_+ + \text{Loss}_{-} Loss=Loss++Loss

负采样小结

1.负采样层的输入是隐藏层的向量 h ∈ R D × 1 h \in \mathbb{R}^{D \times 1} hRD×1(隐藏层通常有Word2Vec模型的输入进行词嵌入获得), D D D为隐藏层层数,输出是对应的预测的单词。负采样层通过正例的权重输出矩阵 θ 1 ∈ V × D \theta_1 \in V \times D θ1V×D 与隐藏层向量 h h h进行相乘直接得到了单词的得分向量, V V V 为词汇表大小,取得分向量中最大得分位置索引的单词作为预测结果单词。

2.负采样损失函数的计算包括两个部分,正例损失的计算和负例损失的计算。对于正例损失,我们将正例权重输出矩阵 θ 1 \theta_1 θ1与隐藏层的向量 h h h相乘得到单词得分向量,随后取出正例对于索引位置单词的得分,即
S 1 = ( θ 1 h + b 1 ′ ) T T 1 S_1 = (\theta_1h + b_1')^TT_1 S1=(θ1h+b1)TT1
其中 T 1 T_1 T1为正例对应的标签。然后我们使用 S i g m o i d Sigmoid Sigmoid函数将得分转换为概率,即
P 1 = σ ( S 1 ) P_1= \sigma(S_1) P1=σ(S1)
然后我们使用交叉熵计算损失,即
Loss + = − log ⁡ ( P 1 ) \text{Loss}_+ = -\log(P_1) Loss+=log(P1)

对于负例损失的计算,我们首先通过词频加权处理得到每个单词的概率分布,依据概率分布进行抽样,抽取出 k k k个负例,随后我们进行负例计算。我们将负例权重输出矩阵 θ 0 \theta_0 θ0与隐藏层的向量 h h h相乘得到单词得分向量,随后依次取出每个负例对于索引位置单词的得分然后取负号,即
S 0 , i = − ( θ 0 h + b 0 ′ ) T T 0 , i S_{0,i} = -(\theta_0h + b_0')^TT_{0,i} S0,i=(θ0h+b0)TT0,i
其中 T 0 , i T_{0,i} T0,i为负例对应的标签。然后我们使用 S i g m o i d Sigmoid Sigmoid函数将得分转换为概率,即
P 1 = σ ( S 0 , i ) P_1= \sigma(S_{0,i}) P1=σ(S0,i)
然后我们使用交叉熵计算损失,即
Loss − = − ∑ i = 1 k log ⁡ ( P 0 , i ) \text{Loss}_- = -\sum_{i = 1}^{k}\log(P_{0,i}) Loss=i=1klog(P0,i)

最后我们将 L o s s + Loss_+ Loss+ L o s s − Loss_- Loss相加得到总的损失Loss,即
Loss = Loss + + Loss − \text{Loss} = \text{Loss}_+ + \text{Loss}_- Loss=Loss++Loss

到此,负采样算法的损失函数已经介绍完毕!

以上我们介绍了Word2Vec以及两种优化方法,Word2Vec的内容到此结束。

附录

分层Softmax预处理程序代码

def preprocess(text):
	text = text.lower()
	text = text.replace('.', ' .')
	text = text.replace(',', ' ,')
	text = text.replace('!', ' !')
	words = text.split(' ')
	
	word_to_id = {}
	id_to_word = {}
	word_count = {}
	for word in words:
		if word not in word_to_id:
			new_id = len(word_to_id)
			word_to_id[word] = new_id
			id_to_word[new_id] = word
			word_count[new_id] = 1
		else:
			word_count[word_to_id[word]] += 1
			corpus = np.array([word_to_id[w] for w in words])
	
	return corpus, word_to_id, id_to_word, word_count

构建Huffman数程序代码

import heapq	

class HuffmanNode:
	def __init__(self, char, freq):
	self.char = char
	self.freq = freq
	self.left = None
	self.right = None

	# 使节点成为可比较的,基于频率
	def __lt__(self, other):
	return self.freq < other.freq
	
	def build_huffman_tree(frequencies):
		# 初始化优先队列
		priority_queue = [HuffmanNode(char, freq) for char, freq in enumerate(frequencies)]
		heapq.heapify(priority_queue)
		
		# 当只剩下一个节点时停止
		while len(priority_queue) > 1:
			# 取出两个最小的节点
			left = heapq.heappop(priority_queue)
			right = heapq.heappop(priority_queue)
			
			# 创建新的内部节点
			merged = HuffmanNode(None, left.freq + right.freq)
			merged.left = left
			merged.right = right
			
			# 将新节点添加回优先队列
			heapq.heappush(priority_queue, merged)
		
		# 返回根节点
		return priority_queue[0]
		
	def get_huffman_codes(node, current_code="", codes={}):
		# 如果是叶子节点,记录路径
		if node.char is not None:
			codes[node.char] = current_code
		return codes

		# 向左递归
		if node.left:
			get_huffman_codes(node.left, current_code + "0", codes)
		# 向右递归
		if node.right:
			get_huffman_codes(node.right, current_code + "1", codes)
	
		return codes
	
# 示例
frequencies = [5, 2, 1, 2, 2, 1, 1, 1, 1, 1]  # 词频数组
root = build_huffman_tree(frequencies)
codes = get_huffman_codes(root)

print(codes)		
# {1: '000', 3: '001', 8: '0100', 7: '0101', 4: '011', 5: '1000', 9: '1001', 6: '1010', 2: '1011', 0: '11'}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2198087.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构与算法篇(刷题篇 - 树)

目录 1. 二叉树的前序遍历&#xff08;简单&#xff09; 1.1. 题目描述 1.2. 解题思路 方法一&#xff1a;递归&#xff08;推荐使用&#xff09; 方法二&#xff1a;非递归&#xff08;扩展思路&#xff09; 2. 二叉树的中序遍历&#xff08;中等&#xff09; 2.1. 题目…

[简单实践]Noisy Print - 自制基于加性噪声模型的简易降噪器

NoisyPrint 最近在学习的过程中&#xff0c;突然想起一个在Adobe Audition中用过的功能。 为什么会想到这个功能呢&#xff0c;因为在我使用DeepFilter的过程中&#xff0c;我发现对于一些低信噪比的信号来说&#xff0c;DeepFilter很容易出现过拟合现象&#xff0c;导致音源…

大数据毕业设计选题推荐-电影票房数据分析系统-Python数据可视化-Hive-Hadoop-Spark

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、PHP、.NET、Node.js、GO、微信小程序、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇…

Linux云计算 |【第四阶段】RDBMS2-DAY1

主要内容&#xff1a; MySQL主从同步&#xff08;概述、原理、构建主从同步&#xff09;、主从同步结构类型&#xff08;主多从、主从从、主主&#xff09;、复制模式&#xff08;异步、半同步&#xff09;、启用半同步复制 一、MySQL主从同步 MySQL 主从同步&#xff08;Mas…

工控风云 | 科东软件受邀参加2024 CCF工控“风云论坛”并做演讲

近日&#xff0c;CCF工业控制计算机专委会首届“风云论坛”在苏州CCF业务总部&学术交流中心成功召开。作为国内工业操作系统领军企业&#xff0c;科东软件受邀参加本次大会&#xff0c;并做“鸿道(Intewell)新型工业操作系统”主题演讲。 “要打好科技仪器设备、操作系统…

自动驾驶系列—超声波雷达技术详解:自动驾驶中的短距离感知利器

&#x1f31f;&#x1f31f; 欢迎来到我的技术小筑&#xff0c;一个专为技术探索者打造的交流空间。在这里&#xff0c;我们不仅分享代码的智慧&#xff0c;还探讨技术的深度与广度。无论您是资深开发者还是技术新手&#xff0c;这里都有一片属于您的天空。让我们在知识的海洋中…

知识改变命运 数据结构【优先级队列(堆)】

优先级队列(堆&#xff09; 1&#xff1a;堆概念2&#xff1a;堆的创建(以小根堆为例)3&#xff1a;堆的插入与删除3.1 堆的插入3.2堆的删除 4&#xff1a;oj练习5&#xff1a;堆排序6接口介绍&#xff08;底层代码的查看&#xff09;6.1常用三种构造方法 前言&#xff1a;队列…

Flutter-->Namespace not specified.

更新Android gradle 7.5.0之后, 运行项目会出现Namespace not specified.问题, 这里出一个我的解决方案. 由于很多库都不可能及时更新适配gradle 7.5.0, 所以可以等pub get将子库拉取到本地之后, 在本地手动添加namespace属性,即可解决本文问题. 作为程序猿,那肯定不可能手动修…

Elasticsearch、Kibana学习

系列文章目录 JavaSE基础知识、数据类型学习万年历项目代码逻辑训练习题代码逻辑训练习题方法、数组学习图书管理系统项目面向对象编程&#xff1a;封装、继承、多态学习封装继承多态习题常用类、包装类、异常处理机制学习集合学习IO流、多线程学习仓库管理系统JavaSE项目员工…

鸿蒙--知乎评论

这里我们将采用组件化的思想进行开发 拆解组件 pages下&#xff0c;新建ZhiHu的文件pages下&#xff0c;新建components, 里面新建 HmNavBar和HmCommentItem components/HmNavBar.ets Entry Component struct HmNavBar {title: string 标题build() {Row() {// 返回键Row() {I…

数据湖数据仓库数据集市数据清理以及DataOps

一提到大数据我们就知道是海量数据&#xff0c;但是我们并不了解需要从哪些维度去考虑这些数据的存储。比如 数据湖、数据仓库、数据集市&#xff0c;以及数据自动化应用DataOps有哪些实现方式和实际应用&#xff0c;这篇文章将浅显的做一次介绍。 数据湖 数据湖是一种以自然…

Spring Boot 学习之路 -- Thymeleaf 模板引擎

前言 最近因为业务需要&#xff0c;被拉去研究后端的项目&#xff0c;代码框架基于 Spring Boot&#xff0c;后端对我来说完全小白&#xff0c;需要重新学习研究…出于个人习惯&#xff0c;会以 Blog 文章的方式做一些记录&#xff0c;文章内容基本来源于「 Spring Boot 从入门…

Python爬虫之正则表达式于xpath的使用教学及案例

正则表达式 常用的匹配模式 \d # 匹配任意一个数字 \D # 匹配任意一个非数字 \w # 匹配任意一个单词字符&#xff08;数字、字母、下划线&#xff09; \W # 匹配任意一个非单词字符 . # 匹配任意一个字符&#xff08;除了换行符&#xff09; [a-z] # 匹配任意一个小写字母 […

获取淘宝直播间弹幕数据的技术探索实践方法

在数字时代&#xff0c;直播已成为电商营销的重要渠道之一&#xff0c;而弹幕作为直播互动的核心元素&#xff0c;蕴含着丰富的用户行为和情感数据。本文将详细介绍如何获取淘宝直播间弹幕数据的技术方法和步骤&#xff0c;同时分析不同工具和方法的优缺点&#xff0c;并提供实…

夜莺监控的机器支持挂载到多个业务组了

夜莺开源项目于国庆前夕发布了 v7.4.1 版本&#xff0c;修复了一些 bug&#xff0c;同时也带来了一些新功能。其中最重要的一个功能是&#xff1a;机器支持挂载到多个业务组了。本文将介绍几个重要的变更。 所有变更点 feat: 左侧栏业务组新设计feat: 机器支持了绑定到多个业…

GAN(Generative Adversarial Nets)

GAN(Generative Adversarial Nets) 引言 GAN由Ian J. Goodfellow等人提出&#xff0c;是Ian J. Goodfellow的代表作之一&#xff0c;他还出版了大家耳熟能详的花书&#xff08;Deep Learning深度学习&#xff09;&#xff0c;GAN主要的思想是同时训练两个模型&#xff0c;生成…

CentOS 7 安装并部署 Mysql

安装 Mysql 下载并添加库 sudo yum localinstall https://dev.mysql.com/get/mysql57-community-release-el7-11.noarch.rpm安装 Mysql 包&#xff08;一路键入y即可&#xff09; yum -y install mysql mysql-server --nogpgcheck- -nogpgcheck 作用为 禁掉GPG验证检查 配…

Serilog文档翻译系列(七) - 应用设置、调试和诊断、开发接收器

01应用设置 Serilog 支持在 App.config 和 Web.config 文件中使用简单的 配置语法&#xff0c;以设置最低日志级别、为事件添加额外属性以及控制日志输出。 Serilog 主要通过代码进行配置&#xff0c;设置支持旨在作为补充功能。虽然不是全面的&#xff0c;但大多数日志记录配…

SpringBoot3实战:实现接口签名验证

有时候我们要把自己的服务暴露给第三方去调用&#xff0c;为了防止接口不被授权访问&#xff0c;我们一般采用接口签名的方式去保护接口。 接下来松哥和大家聊一聊这个话题。 一 场景分析 什么时候需要接口签名&#xff1f; 接口签名是一种重要的安全机制&#xff0c;用于确…

Jmeter链接数据库、分布式

目录 一、Jmeter链接数据库 连接准备 有两种添加驱动的方法 第一种&#xff1a; 第二种&#xff1a; 连接方法&#xff1a; 1.先添加一个配置元件中的jdbc connection configuration 2、配置内容 使用&#xff1a; 二、Jmeter做分布式操作 1、准备多台电脑 2、多台电…