【深度学习与NLP】——RNN架构解析

news2024/11/13 22:37:37

目录

RNN架构解析

1.1 认识RNN模型

学习目标

什么是RNN模型

RNN模型的作用

RNN模型的分类

小节总结

1.2 传统RNN模型

学习目标

传统RNN的内部结构图

小节总结


RNN架构解析

1.1 认识RNN模型


学习目标

  • 了解什么是RNN模型.
  • 了解RNN模型的作用.
  • 了解RNN模型的分类.

什么是RNN模型

  • RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

  • 一般单层神经网络结构:


  • RNN单层网络结构:


  • 以时间步对RNN进行展开后的单层网络结构:


  • RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.

RNN模型的作用

  • 因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.

  • 下面我们将以一个用户意图识别的例子进行简单的分析:


  • 第一步: 用户输入了"What time is it ?", 我们首先需要对它进行基本的分词, 因为RNN是按照顺序工作的, 每次只接收一个单词进行处理.


  • 第二步: 首先将单词"What"输送给RNN, 它将产生一个输出O1.


  • 第三步: 继续将单词"time"输送给RNN, 但此时RNN不仅仅利用"time"来产生输出O2, 还会使用来自上一层隐层输出O1作为输入信息.


  • 第四步: 重复这样的步骤, 直到处理完所有的单词.


  • 第五步: 最后,将最终的隐层输出O5进行处理来解析用户意图.


RNN模型的分类

  • 这里我们将从两个角度对RNN模型进行分类. 第一个角度是输入和输出的结构, 第二个角度是RNN的内部构造.

  • 按照输入和输出的结构进行分类:

    • N vs N - RNN
    • N vs 1 - RNN
    • 1 vs N - RNN
    • N vs M - RNN

  • 按照RNN的内部构造进行分类:

    • 传统RNN
    • LSTM
    • Bi-LSTM
    • GRU
    • Bi-GRU

  • N vs N - RNN:
    • 它是RNN最基础的结构形式, 最大的特点就是: 输入和输出序列是等长的. 由于这个限制的存在, 使其适用范围比较小, 可用于生成等长度的合辙诗句.


  • N vs 1 - RNN:
    • 有时候我们要处理的问题输入是一个序列,而要求输出是一个单独的值而不是序列,应该怎样建模呢?我们只要在最后一个隐层输出h上进行线性变换就可以了,大部分情况下,为了更好的明确结果, 还要使用sigmoid或者softmax进行处理. 这种结构经常被应用在文本分类问题上.


  • 1 vs N - RNN:
    • 如果输入不是序列而输出为序列的情况怎么处理呢?我们最常采用的一种方式就是使该输入作用于每次的输出之上. 这种结构可用于将图片生成文字任务等.


  • N vs M - RNN:
    • 这是一种不限输入输出长度的RNN结构, 它由编码器和解码器两部分组成, 两者的内部结构都是某类RNN, 它也被称为seq2seq架构. 输入数据首先通过编码器, 最终输出一个隐含变量c, 之后最常用的做法是使用这个隐含变量c作用在解码器进行解码的每一步上, 以保证输入信息被有效利用.

  • seq2seq架构最早被提出应用于机器翻译, 因为其输入输出不受限制,如今也是应用最广的RNN模型结构. 在机器翻译, 阅读理解, 文本摘要等众多领域都进行了非常多的应用实践.

  • 关于RNN的内部构造进行分类的内容我们将在后面使用单独的小节详细讲解.

小节总结

  • 学习了什么是RNN模型:

    • RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.

  • RNN的循环机制使模型隐层上一时间步产生的结果, 能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响.


  • 学习了RNN模型的作用:

    • 因为RNN结构能够很好利用序列之间的关系, 因此针对自然界具有连续性的输入序列, 如人类的语言, 语音等进行很好的处理, 广泛应用于NLP领域的各项任务, 如文本分类, 情感分析, 意图识别, 机器翻译等.

  • 以一个用户意图识别的例子对RNN的运行过程进行简单的分析:

    • 第一步: 用户输入了"What time is it ?", 我们首先需要对它进行基本的分词, 因为RNN是按照顺序工作的, 每次只接收一个单词进行处理.
    • 第二步: 首先将单词"What"输送给RNN, 它将产生一个输出O1.
    • 第三步: 继续将单词"time"输送给RNN, 但此时RNN不仅仅利用"time"来产生输出O2, 还会使用来自上一层隐层输出O1作为输入信息.
    • 第四步: 重复这样的步骤, 直到处理完所有的单词.
    • 第五步: 最后,将最终的隐层输出O5进行处理来解析用户意图.

  • 学习了RNN模型的分类:

    • 这里我们将从两个角度对RNN模型进行分类. 第一个角度是输入和输出的结构, 第二个角度是RNN的内部构造.

  • 按照输入和输出的结构进行分类:

    • N vs N - RNN
    • N vs 1 - RNN
    • 1 vs N - RNN
    • N vs M - RNN

  • N vs N - RNN:

    • 它是RNN最基础的结构形式, 最大的特点就是: 输入和输出序列是等长的. 由于这个限制的存在, 使其适用范围比较小, 可用于生成等长度的合辙诗句.

  • N vs 1 - RNN:

    • 有时候我们要处理的问题输入是一个序列,而要求输出是一个单独的值而不是序列,应该怎样建模呢?我们只要在最后一个隐层输出h上进行线性变换就可以了,大部分情况下,为了更好的明确结果, 还要使用sigmoid或者softmax进行处理. 这种结构经常被应用在文本分类问题上.

  • 1 vs N - RNN:

    • 如果输入不是序列而输出为序列的情况怎么处理呢?我们最常采用的一种方式就是使该输入作用于每次的输出之上. 这种结构可用于将图片生成文字任务等.

  • N vs M - RNN:

    • 这是一种不限输入输出长度的RNN结构, 它由编码器和解码器两部分组成, 两者的内部结构都是某类RNN, 它也被称为seq2seq架构. 输入数据首先通过编码器, 最终输出一个隐含变量c, 之后最常用的做法是使用这个隐含变量c作用在解码器进行解码的每一步上, 以保证输入信息被有效利用.
    • seq2seq架构最早被提出应用于机器翻译, 因为其输入输出不受限制,如今也是应用最广的RNN模型结构. 在机器翻译, 阅读理解, 文本摘要等众多领域都进行了非常多的应用实践.

  • 按照RNN的内部构造进行分类:

    • 传统RNN
    • LSTM
    • Bi-LSTM
    • GRU
    • Bi-GRU

  • 关于RNN的内部构造进行分类的内容我们将在后面使用单独的小节详细讲解.


1.2 传统RNN模型


学习目标

  • 了解传统RNN的内部结构及计算公式.
  • 掌握Pytorch中传统RNN工具的使用.
  • 了解传统RNN的优势与缺点.

传统RNN的内部结构图


  • 结构解释图:


  • 内部结构分析:
    • 我们把目光集中在中间的方块部分, 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推.

  • 内部结构过程演示:

  • 根据结构分析得出内部计算公式:


  • 激活函数tanh的作用:
    • 用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间.


  • Pytorch中传统RNN工具的使用:

    • 位置: 在torch.nn工具包之中, 通过torch.nn.RNN可调用.

  • nn.RNN类初始化主要参数解释:
    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • nonlinearity: 激活函数的选择, 默认是tanh.

  • nn.RNN类实例化对象主要参数解释:
    • input: 输入张量x.
    • h0: 初始化的隐层张量h.

  • nn.RNN使用示例:
# 导入工具包
>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.RNN(5, 6, 1)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(1, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)

>>> hn
tensor([[[ 0.4282, -0.8475, -0.0685, -0.4601, -0.8357,  0.1252],
         [ 0.5758, -0.2823,  0.4822, -0.4485, -0.7362,  0.0084],
         [ 0.9224, -0.7479, -0.3682, -0.5662, -0.9637,  0.4938]]],
       grad_fn=<StackBackward>)

  • 传统RNN的优势:
    • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.

  • 传统RNN的缺点:
    • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.

  • 什么是梯度消失或爆炸呢?
    • 根据反向传播算法和链式法则, 梯度的计算可以简化为以下公式:

  • 其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.

  • 梯度消失或爆炸的危害:

    • 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值).

小节总结

  • 学习了传统RNN的结构并进行了分析;

    • 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的输入, 它们进入RNN结构体后, 会"融合"到一起, 这种融合我们根据结构解释可知, 是将二者进行拼接, 形成新的张量[x(t), h(t-1)], 之后这个新的张量将通过一个全连接层(线性层), 该层使用tanh作为激活函数, 最终得到该时间步的输出h(t), 它将作为下一个时间步的输入和x(t+1)一起进入结构体. 以此类推.

  • 根据结构分析得出了传统RNN的计算公式.


  • 学习了激活函数tanh的作用:

    • 用于帮助调节流经网络的值, tanh函数将值压缩在-1和1之间.

  • 学习了Pytorch中传统RNN工具的使用:

    • 位置: 在torch.nn工具包之中, 通过torch.nn.RNN可调用.

  • nn.RNN类初始化主要参数解释:

    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
    • nonlinearity: 激活函数的选择, 默认是tanh.

  • nn.RNN类实例化对象主要参数解释:

    • input: 输入张量x.
    • h0: 初始化的隐层张量h.

  • 实现了nn.RNN的使用示例, 获得RNN的真实返回结果样式.


  • 学习了传统RNN的优势:

    • 由于内部结构简单, 对计算资源要求低, 相比之后我们要学习的RNN变体:LSTM和GRU模型参数总量少了很多, 在短序列任务上性能和效果都表现优异.

  • 学习了传统RNN的缺点:

    • 传统RNN在解决长序列之间的关联时, 通过实践,证明经典RNN表现很差, 原因是在进行反向传播的时候, 过长的序列导致梯度的计算异常, 发生梯度消失或爆炸.

  • 学习了什么是梯度消失或爆炸:

    • 根据反向传播算法和链式法则, 得到梯度的计算的简化公式:其中sigmoid的导数值域是固定的, 在[0, 0.25]之间, 而一旦公式中的w也小于1, 那么通过这样的公式连乘后, 最终的梯度就会变得非常非常小, 这种现象称作梯度消失. 反之, 如果我们人为的增大w的值, 使其大于1, 那么连乘够就可能造成梯度过大, 称作梯度爆炸.

  • 梯度消失或爆炸的危害:

    • 如果在训练过程中发生了梯度消失,权重无法被更新,最终导致训练失败; 梯度爆炸所带来的梯度过大,大幅度更新网络参数,在极端情况下,结果会溢出(NaN值).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1994115.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何使用Jmeter对HTTP接口进行压力测试?

我们不应该仅仅局限于某一种工具&#xff0c;性能测试能使用的工具非常多&#xff0c;选择适合的就是最好的。笔者已经使用Loadrunner进行多年的项目性能测试实战经验&#xff0c;也算略有小成&#xff0c;任何性能测试&#xff08;如压力测试、负载测试、疲劳强度测试等&#…

openai gym box space configuration

题意&#xff1a;在OpenAI Gym环境中配置一个“Box”空间 问题背景&#xff1a; I need an observation space ranging from [0,inf) 我需要一个观察空间&#xff0c;其范围是从 [0, ∞)&#xff08;0到正无穷大&#xff09; Im new to openai gym, and not sure what the fo…

【算法】最短路径算法思路小结

一、基础&#xff1a;二叉树的遍历->图的遍历 提到搜索算法&#xff0c;就不得不说两个最基础的思想&#xff1a; BFS&#xff08;Breadth First Search&#xff09;广度优先搜索 DFS&#xff08;Depth First Search&#xff09;深度优先搜索 刚开始是在二叉树遍历中接触这…

为什么企业需要安装加密软件

保护敏感数据&#xff1a; 企业通常拥有大量的敏感数据&#xff0c;如客户信息、财务数据、知识产权等。这些数据如果未经保护而被泄露&#xff0c;可能会对企业造成严重的经济损失和声誉损害。加密软件能够对这些敏感数据进行加密&#xff0c;即使数据被窃取&#xff0c;也无…

AI 时代,网关更能打了?

作者&#xff1a;澄潭、望宸 网关在网络通信中扮演着诸多角色&#xff0c;包括数据转发、协议转化、负载均衡、访问控制和身份验证、安全防护、内容审核&#xff0c;以及服务和 API 颗粒度的管控等&#xff0c;因此常见的网关种类有流量网关、安全网关、微服务网关、API 网关等…

73.游戏分析工具的添加对象与删除对象

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a;易道云信息技术研究院 上一个内容&#xff1a;72.树形列表绑定对应的右键菜单 以它的代码为基础进行修改 删除对象在 CwndRAN 文件中…

猎码安卓APP开发IDE,amix STUDIO中文java,HTML5开发工具

【无爱也能发电】Xili 2024/8/2 10:41:20 猎码安卓APP开发IDE,amix java开发工具 我研发这些只有一小部分理由是为了赚钱&#xff0c;更多是想成就牛逼的技术产品。 目前的产品就够我赚钱的&#xff0c;我持续更新就好了&#xff0c;没必要继续研究。 IDE不赚钱&#xff0c;谁…

【Redis进阶】缓存应用

目录 缓存击穿 概念 缓存击穿的原因 缓存击穿的影响 缓存击穿的应对措施 设置分布式锁 提前更新缓存 请求分级和降级 缓存穿透 概念 缓存穿透的原因 缓存穿透的应对措施 缓存空值 布隆过滤器 限流和黑名单 缓存雪崩 缓存雪崩概念 缓存雪崩的原因 应对措施 缓…

gogs的安装和使用(docker)

1.docker安装gogs 1.1 拉取gogs镜像 docker pull gogs/gogs #也可改为自己需要的版本号 1.2 创建存储目录 mkdir /root/gogs 1.3 运行镜像 docker run --namegogs -d -p 10022:22 -p 13000:3000 -v /root/gogs:/data gogs/gogs 1.3.1 指令解析 --namegogs: 指定名称…

力扣刷题-轮转数组

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” 首先&#xff0c;我们现在这里提供的是一种特别简单的思路&#xff0c;我们先来看一下这段代码&#xff1a; void rotate(int* nums, int numsSize, int k) {k%numsSize;int n…

深入了解核函数:连接机器学习与统计学的桥梁

引言 在机器学习中&#xff0c;支持向量机&#xff08;SVM&#xff09;是一种强大的监督学习模型&#xff0c;特别适合处理分类问题。然而&#xff0c;SVM最初被设计用于线性可分的数据集&#xff0c;现实中的数据往往不是线性可分的。为了解决这一问题&#xff0c;我们引入了…

第十一届MathorCup高校数学建模挑战赛-C题:基于有限差分法的散热机理建模与海底数据中心优化设计

目录 摘 要 1 问题重述 1.1 问题背景 1.2 问题重述 2 问题分析 3 模型假设 4 符号说明 5 我们的工作 6 模型的建立与求解 6.1 建模前的准备 6.2 问题一的建模与求解 6.3 问题二的建模与求解 6.4 问题三的建模与求解 6.5 问题四的建模与解决 7 结果检验及误差分析 8 模型评价 9 …

[Modbus] Modbus协议开发-基本概念(一)

历史 ModBus官网是Modicon&#xff08;Modicon早年已被施耐德收购&#xff09;公司为其PLC通讯而开发的一种通讯协议。 概述 通过Modbus协议&#xff0c;控制器之间、或控制器经由网络&#xff08;如以太网&#xff09;可以和其它设备之间进行通信。 优点 免费、好用、成熟…

springboot项目搭建集成 redis/跨域/远程请求

目录 一&#xff0c;创建maven项目 1&#xff0c;左上角file > new > maven project 2&#xff0c;next 到 创建 Group id 和 Artifact id​编辑​编辑 二&#xff0c;配置springboot 1&#xff0c;配置pom文件&#xff0c; 2&#xff0c;创建启动类 3&#xff…

五段式S型算法笔记

设定已知&#xff1a;v0 vmax j&#xff1b; 减加速段&#xff1a;tm到tmax 加加速段&#xff1a;0到tm tm&#xff1a;中点时间 vm&#xff1a;中点速度 vmax&#xff1a;最大速度&#xff1b; j加速度的斜率 -j相反加速度的斜率 这个图首先说明&#xff…

大数据面试SQL(六):共同使用ip用户检测问题

文章目录 共同使用ip用户检测问题 一、题目 二、分析 三、SQL实战 四、样例数据参考 共同使用ip用户检测问题 一、题目 现有用户登录日志表&#xff0c;记录了每个用户登录的IP地址&#xff0c;请查询共同使用过3个及以上IP的用户对。 样例数据&#xff1a; 结果数据&…

NSSCTF练习记录:[SWPUCTF 2021 新生赛]jicao

题目&#xff1a; 这段PHP代码的意思是&#xff1a; 对index.php文件进行语法高亮显示&#xff0c;插入flag.php文件&#xff0c;变量id的值为POST传递的值&#xff0c;变量json的值为GET传递的json类型的值。当id值为wllmNB且json中含有键为“x”&#xff0c;值为“wllm”的时…

【Android】安卓四大组件之Service用法

文章目录 使用Handler更新UIService基本特点启动方式非绑定式服务使用步骤 绑定式服务步骤 生命周期非绑定式启动阶段结束阶段 绑定式启动阶段结束阶段 前台Service使用步骤结束结束Service本身降级为普通Service降级为普通Service 使用Handler更新UI 主线程创建Handler对象&a…

文件描述符中设置FD_CLOEXEC的用处

linux中&#xff0c;父进程fork出子进程&#xff0c;子进程本身会继承父进程的所有文件描述符。若子进程再调用exec系列函数转化为新的进程实体&#xff0c;其实父进程的描述符对其没有意义。此时文件上只需要设置FD_CLOEXEC即可。 下面是例子说明&#xff1a; #include <…

vue3、uniapp-vue3模块自动导入

没有使用插件 使用插件,模块自动导入 安装: npm i -D unplugin-auto-importvite.config.js (uniapp没有此文件,在项目根目录下创建) import { defineConfig } from "vite"; import uni from "dcloudio/vite-plugin-uni"; import AutoImport from &qu…