Day877.数据空洞 -MySQL实战

news2024/12/23 4:31:47

数据空洞

Hi,我是阿昌,今天学习记录的是关于数据空洞的内容。

数据库占用空间太大,把一个最大的表删掉了一半的数据,怎么表文件的大小还是没变?

一个 InnoDB 表包含两部分,即:

  • 表结构定义
  • 数据

MySQL 8.0 版本以前,表结构是存在以.frm 为后缀的文件里。

MySQL 8.0 版本,则已经允许把表结构定义放在系统数据表中了。

因为表结构定义占用的空间很小,所以主要讨论的是表数据。


一、参数 innodb_file_per_table

表数据既可以存在共享表空间里,也可以是单独的文件。

这个行为是由参数innodb_file_per_table控制的:

  1. 这个参数设置为 OFF 表示的是,表的数据放在系统共享表空间,也就是跟数据字典放在一起;
  2. 这个参数设置为 ON 表示的是,每个 InnoDB 表数据存储在一个以 .ibd 为后缀的文件中。

MySQL 5.6.6 版本开始,它的默认值就是 ON 了。

==建议不论使用 MySQL 的哪个版本,都将这个值设置为 ON。

因为,一个表单独存储为一个文件更容易管理,而且在你不需要这个表的时候,通过 drop table 命令,系统就会直接删除这个文件。

而如果是放在共享表空间中,即使表删掉了,空间也是不会回收的。

所以,将 innodb_file_per_table 设置为 ON,是推荐做法。

在删除整个表的时候,可以使用 drop table 命令回收表空间。

但是,遇到的更多的删除数据的场景是删除某些行,这时就遇到了文章开头的问题:

表中的数据被删除了,但是表空间却没有被回收。


二、数据删除流程

先再来看一下 InnoDB 中一个索引的示意图。

在前面索引(上)和索引(下)中提到过,InnoDB 里的数据都是用 B+ 树的结构组织的。

图 1 B+ 树索引示意图
假设,要删掉 R4 这个记录,InnoDB 引擎只会把 R4 这个记录标记为删除。

如果之后要再插入一个 ID 在 300 和 600 之间的记录时,可能会复用这个位置。

但是,磁盘文件的大小并不会缩小。

现在,已经知道了 InnoDB 的数据是按页存储的,那么如果我们删掉了一个数据页上的所有记录,会怎么样?

答案是,整个数据页就可以被复用了。但是,数据页的复用跟记录的复用是不同的

记录的复用,只限于符合范围条件的数据。比如上面的这个例子,R4 这条记录被删除后,如果插入一个 ID 是 400 的行,可以直接复用这个空间。但如果插入的是一个 ID 是 800 的行,就不能复用这个位置了。而当整个页从 B+ 树里面摘掉以后,可以复用到任何位置。

以图 1 为例,如果将数据页 page A 上的所有记录删除以后,page A 会被标记为可复用。这时候如果要插入一条 ID=50 的记录需要使用新页的时候,page A 是可以被复用的。如果相邻的两个数据页利用率都很小,系统就会把这两个页上的数据合到其中一个页上,另外一个数据页就被标记为可复用。

进一步地,如果用 delete 命令把整个表的数据删除呢?

结果就是,所有的数据页都会被标记为可复用。但是磁盘上,文件不会变小。

delete 命令其实只是把记录的位置,或者数据页标记为了“可复用”,但磁盘文件的大小是不会变的。

也就是说,通过 delete 命令是不能回收表空间的。这些可以复用,而没有被使用的空间,看起来就像是“空洞”。

实际上,不止是删除数据会造成空洞,插入数据也会。

如果数据是按照索引递增顺序插入的,那么索引是紧凑的。

但如果数据是随机插入的,就可能造成索引的数据页分裂

假设图 1 中 page A 已经满了,这时我要再插入一行数据,会怎样呢?

图 2 插入数据导致页分裂

可以看到,由于 page A 满了,再插入一个 ID 是 550 的数据时,就不得不再申请一个新的页面 page B 来保存数据了。

页分裂完成后,page A 的末尾就留下了空洞(注意:实际上,可能不止 1 个记录的位置是空洞)。

另外,更新索引上的值,可以理解为删除一个旧的值,再插入一个新值。不难理解,这也是会造成空洞的。

也就是说,经过大量增删改的表,都是可能是存在空洞的。

所以,如果能够把这些空洞去掉,就能达到收缩表空间的目的。

而重建表,就可以达到这样的目的。


三、重建表

试想一下,如果现在有一个表 A,需要做空间收缩,为了把表中存在的空洞去掉,可以怎么做呢?

可以新建一个与表 A 结构相同的表 B,然后按照主键 ID 递增的顺序,把数据一行一行地从表 A 里读出来再插入到表 B 中。由于表 B 是新建的表,所以表 A 主键索引上的空洞,在表 B 中就都不存在了。

显然地,表 B 的主键索引更紧凑,数据页的利用率也更高。

如果我们把表 B 作为临时表,数据从表 A 导入表 B 的操作完成后,用表 B 替换 A,从效果上看,就起到了收缩表 A 空间的作用。

这里,你可以使用 alter table A engine=InnoDB 命令来重建表。

在 MySQL 5.5 版本之前,这个命令的执行流程跟我们前面描述的差不多,区别只是这个临时表 B 不需要自己创建,MySQL 会自动完成转存数据、交换表名、删除旧表的操作。

图 3 改锁表 DDL

显然,花时间最多的步骤是往临时表插入数据的过程,如果在这个过程中,有新的数据要写入到表 A 的话,就会造成数据丢失。

因此,在整个 DDL 过程中,表 A 中不能有更新。

也就是说,这个 DDL 不是 Online 的。

而在 MySQL 5.6 版本开始引入的 Online DDL,对这个操作流程做了优化。


重建表的流程:

  1. 建立一个临时文件,扫描表 A 主键的所有数据页;
  2. 用数据页中表 A 的记录生成 B+ 树,存储到临时文件中;
  3. 生成临时文件的过程中,将所有对 A 的操作记录在一个日志文件(row log)中,对应的是图中 state2 的状态;
  4. 临时文件生成后,将日志文件中的操作应用到临时文件,得到一个逻辑数据上与表 A 相同的数据文件,对应的就是图中 state3 的状态;
  5. 用临时文件替换表 A 的数据文件。

图 4 Online DDL

可以看到,与图 3 过程的不同之处在于,由于日志文件记录和重放操作这个功能的存在,这个方案在重建表的过程中,允许对表 A 做增删改操作。

这也就是 Online DDL 名字的来源。


DDL 之前是要拿 MDL 写锁的,这样还能叫 Online DDL 吗?确实,图 4 的流程中,alter 语句在启动的时候需要获取 MDL 写锁,但是这个写锁在真正拷贝数据之前就退化成读锁了。为什么要退化呢?

为了实现 Online,MDL 读锁不会阻塞增删改操作。那为什么不干脆直接解锁呢?

为了保护自己,禁止其他线程对这个表同时做 DDL。而对于一个大表来说,Online DDL 最耗时的过程就是拷贝数据到临时表的过程,这个步骤的执行期间可以接受增删改操作。

所以,相对于整个 DDL 过程来说,锁的时间非常短。对业务来说,就可以认为是 Online 的。

需要补充说明的是,上述的这些重建方法都会扫描原表数据和构建临时文件。

对于很大的表来说,这个操作是很消耗 IO 和 CPU 资源的。

因此,如果是线上服务,你要很小心地控制操作时间。

如果想要比较安全的操作的话,推荐你使用 GitHub 开源的 gh-ost 来做。


四、Online 和 inplace

说到 Online,还要再和你澄清一下它和另一个跟 DDL 有关的、容易混淆的概念 inplace 的区别。

在图 3 中,把表 A 中的数据导出来的存放位置叫作 tmp_table。这是一个临时表,是在 server 层创建的。

在图 4 中,根据表 A 重建出来的数据是放在“tmp_file”里的,这个临时文件是 InnoDB 在内部创建出来的。

整个 DDL 过程都在 InnoDB 内部完成。对于 server 层来说,没有把数据挪动到临时表,是一个“原地”操作,这就是“inplace”名称的来源。所以,我现在问你,如果你有一个 1TB 的表,现在磁盘间是 1.2TB,能不能做一个 inplace 的 DDL 呢?答案是不能。

因为,tmp_file 也是要占用临时空间的。

重建表的这个语句 alter table t engine=InnoDB,其实隐含的意思是:

alter table t engine=innodb,ALGORITHM=inplace;

跟 inplace 对应的就是拷贝表的方式了,用法是:

alter table t engine=innodb,ALGORITHM=copy;

当你使用 ALGORITHM=copy 的时候,表示的是强制拷贝表,对应的流程就是图 3 的操作过程。但我这样说可能会觉得,inplace 跟 Online 是不是就是一个意思?

其实不是的,只是在重建表这个逻辑中刚好是这样而已。

比如,如果要给 InnoDB 表的一个字段加全文索引,写法是:

alter table t add FULLTEXT(field_name);

这个过程是 inplace 的,但会阻塞增删改操作,是非 Online 的。如果说这两个逻辑之间的关系是什么的话,可以概括为:

  1. DDL 过程如果是 Online 的,就一定是 inplace 的;
  2. 反过来未必,也就是说 inplace 的 DDL,有可能不是 Online 的。截止到 MySQL 8.0,添加全文索引(FULLTEXT index)和空间索引 (SPATIAL index) 就属于这种情况。

使用 optimize table、analyze table 和 alter table 这三种方式重建表的区别。

  • 从 MySQL 5.6 版本开始,alter table t engine = InnoDB(也就是 recreate)默认的就是上面图 4 的流程了;
  • analyze table t 其实不是重建表,只是对表的索引信息做重新统计,没有修改数据,这个过程中加了 MDL 读锁;
  • optimize table t 等于 recreate+analyze。

五、总结

现在你已经知道了,如果要收缩一个表,只是 delete 掉表里面不用的数据的话,表文件的大小是不会变的,还要通过 alter table 命令重建表,才能达到表文件变小的目的。重建表的两种实现方式,Online DDL 的方式是可以考虑在业务低峰期使用的,而 MySQL 5.5 及之前的版本,这个命令是会阻塞 DML 的,这个你需要特别小心。


假设现在有人碰到了一个“想要收缩表空间,结果适得其反”的情况,看上去是这样的:

  1. 一个表 t 文件大小为 1TB;
  2. 对这个表执行 alter table t engine=InnoDB;
  3. 发现执行完成后,空间不仅没变小,还稍微大了一点儿,比如变成了 1.01TB。

觉得可能是什么原因呢 ?

1、这个表已经重建过了,没啥空洞,现在在重建,innodb会给数据页一些预留空间,导致文件变大
2、表重建过程中,有大量更新,又产生了空洞


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/196201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我通过 tensorflow 预测了博客的粉丝数

前言:由于最近接触了 tensorflow.js,出于试一下的心态,想通过线性回归预测一下博客的粉丝走向和数量,结果翻车了。虽然场景用错地方,但是整个实战方法用在身高体重等方面的预测还是有可行性,所以就记录下来…

亚马逊云科技助力游戏上云学习心得-增长篇

云服务已经是大势所趋了,通过购置传统服务器来进行应用开发,无法与现代化敏捷的开发方法相结合,对于系统运维的难度也大大增加,而云服务的弹性伸缩、动态计费可以很好地帮助中小企业实现快速应用开发,使得产品的价值最…

LeetCode题目笔记——1337. 矩阵中战斗力最弱的 K 行

文章目录题目描述题目难度——简单方法一:暴力,统计代码/Python方法二:优化代码总结彩蛋题目描述 给你一个大小为 m * n 的矩阵 mat,矩阵由若干军人和平民组成,分别用 1 和 0 表示。 请你返回矩阵中战斗力最弱的 k 行…

Dubbo服务方消费方通信案例

文章目录Maven_服务方Maven_服务消费方测试通信使用注册中心自动找服务设置超时时间重试次数单独设置某个方法不可重试处理多版本的问题本地存根策略负载均衡策略Dubbo高可用服务降级服务降级实现方式Maven_服务方 pom文件&#xff0c;注意依赖的版本。 <properties><…

《无线电发射设备管理规定》解读

2022年12月22日&#xff0c;工业和信息化部公布了《无线电发射设备管理规定》&#xff08;工业和信息化部令第57号&#xff0c;以下简称《规定》&#xff09;。为了更好地理解和执行《规定》&#xff0c;工业和信息化部产业政策与法规司负责同志对《规定》进行了解读。 问题一 …

7.卷积神经网络

7.卷积神经网络 目录 从全连接层到卷积图像卷积 互相关运算&#xff08;手撕卷积&#xff09;卷积层图像中目标的边缘检测学习卷积核 填充和步幅 填充Padding步幅stride 多输入多输出通道 多输入通道多输出通道11 卷积层总结 池化层 最大池化层和平均池化层填充和步幅多个通道…

Matlab 与 Excel 文件的交互

事实上&#xff0c;excel可以解决绝大多数的建模问题&#xff0c;只不过&#xff0c;更加复杂。。。而且难以操作。。。其实可以看看excel的 功能还是很多的不过嘛 术业有专攻的 有专攻的多主体 NetLogo仿真 Comsol 。。。Excel 文件写入向量与张量的excel写入xlswrite(<pat…

JTAG 基础和svf specification介绍

参考&#xff1a; https://www.youtube.com/watch?vUuDf3q5aBjM https://zh.m.wikipedia.org/zh-cn/JTAG浅谈dft之boundary scan JTAG: Joint Test Action Group是开发IEEE 1149.1的工作组&#xff0c;1149.1定义了一个测试开发版上芯片的标准。现在变成了芯片的一个最常见…

yolov5增加iou loss,无痛涨点trick

yolo无痛涨点trick&#xff0c;简单实用 先贴一张最近一篇论文的结果 后来的几种iou的消融实验结果在一定程度上要优于CIoU&#xff0c;最新的WIoU暂时还没复现。 本文将在yolov5的基础上增加SIoU&#xff0c;EIoU&#xff0c;Focal-XIoU&#xff08;X为C,D,G,E,S等&#xff09…

使用Kindling 观测 Kubernetes 应用网络连接状态

kindling介绍&#xff1a; Kindling 解决的是&#xff0c;在不入侵应用的前提下&#xff0c;如何观测网络的问题&#xff0c;其功能主要是通过暴露内核事件来实现观测。如果主机内核版本高于 4.14&#xff0c;可以使用 eBPF 模块&#xff1b;如果主机内核是低版本&#xff0c;…

多级缓存实现

多级缓存实现1.什么是多级缓存2.JVM进程缓存2.1.导入案例2.2.初识Caffeine2.3.实现JVM进程缓存2.3.1.需求2.3.2.实现3.Lua语法入门3.1.初识Lua3.1.HelloWorld3.2.变量和循环3.2.1.Lua的数据类型3.2.2.声明变量3.2.3.循环3.3.条件控制、函数3.3.1.函数3.3.2.条件控制3.3.3.案例4…

俯卧撑计数 opencv-python + mediapipe

分享一个国外的趣味项目&#xff0c;可以计数&#xff0c;也可以完善进行动作是打分&#xff0c;确定标准程度 原文链接&#xff1a;https://aryanvij02.medium.com/push-ups-with-python-mediapipe-open-a544bd9b4351 程序原理介绍 在新加坡军队中&#xff0c;有一种测试叫做…

程序股票交易接口怎么撤单?

在程序股票交易接口的开发基础上&#xff0c;还能增加一个撤单的委托模块&#xff0c;因为程序股票交易接口的开发不单单是委托下单&#xff0c;那照样也能撤单&#xff0c;这两种的开发原理上&#xff0c;都不冲突&#xff0c;有的股票接口需要计算多种算法&#xff0c;算起来…

CNCAP2021法规adas功能场景

CNCAP2021法规adas功能场景概述功能介绍试验场景概述 C-NCAP是中国汽车技术研究中心于2006年3月2日正式发布的首版中国新车评价规程。中国新车评价规程每三年进行一次规程改版&#xff0c;最新的是2021版本。本文只针对cncap2021主动安全场景进行梳理。 功能介绍 1、AEB(Aut…

vue2低代码平台搭建(三)组件间交互的实现

前言 大家好,我是L丶Y,我们在上一篇文章中主要介绍了低代码平台的页面设计器相关的一些功能原理,打通了页面设计器顶部操作栏、左侧组件列表,中间画布、右侧属性配置四个部分的关系。能够实现组件列表的展示、组件到画布的拖动,属性配置修改对组件渲染效果影响,并说明了…

Picgo配置Bilibili图床

Picgo 配置Bilibili 图床 picgo-plugin-bilibili 为 PicGo 开发的一款插件&#xff0c;新增了B站图床 图床。 使用用户动态的图片上传API。填写SESSDATA即可&#xff0c;获取方式在下面。 文章目录Picgo 配置Bilibili 图床在线安装获取B站SESSDATA图片样式解决B站防盗链&#…

隐函数及参数方程求导——“高等数学”

各位CSDN的uu们你们好呀&#xff0c;今天&#xff0c;小雅兰的内容是隐函数求导和参数方程求导&#xff0c;下面&#xff0c;就让我们进入求导数的世界吧 一、隐函数的导数 二、隐函数求导 三、由参数方程确定的函数的导数 四、相关变化率 一、隐函数的导数 要想知道隐函数…

官宣:计算中间件 Apache Linkis 正式毕业成为 Apache 顶级项目

Apache 软件基金会&#xff08;ASF&#xff09;孵化器于2022年12月03日&#xff0c;通过了 Apache Linkis 计算中间件项目的孵化毕业投票。2023年01月18日&#xff0c;Apache 软件基金会官方宣布 Apache Linkis 顺利毕业&#xff0c;成为 Apache 顶级项目&#xff08;TLP&#…

泊松分布的计算方式

如果都要计算泊松分布了&#xff0c;那么就默认你知道泊松分布的基本知识了&#xff0c;我这里只介绍如何计算&#xff0c;我是用的Excel直接套用公式计算的&#xff0c;如果想在代码里用&#xff0c;我的实现方式是&#xff0c;先用Excel把值全部求出来&#xff0c;然后做成ma…

开组会写论文必备工具清单

来源&#xff1a;投稿 作者&#xff1a;卷舒 编辑&#xff1a;学姐 公式工具 https://www.latexlive.com/ snip这个工具也与之类似&#xff0c;但是需要安装&#xff0c;且有50个的限制。 这是一个LaTeX公式在线编辑器。提供了各类快捷符号及公式模板。在输入区域尝试LaTeX公…