昇思25天学习打卡营第22天|CycleGAN图像风格迁移互换

news2024/11/13 9:50:15

相关知识

CycleGAN

循环生成网络,实现了在没有配对示例的情况下将图像从源域X转换到目标域Y的方法,应用于域迁移,也就是图像风格迁移。上章介绍了可以完成图像翻译任务的Pix2Pix,但是Pix2Pix的数据必须是成对的。CycleGAN中只需要两种域的数据,而不需要有严格的对应关系,是无监督的图像迁移网络。

模型结构

Cycle由两个镜像对称的GAN网络组成。X和Y是两种不同的域,而G是将X生成Y的生成器,F是将Y生成X的生成器,Dx和Dy依然是他们本身的判别器。最终模型生成相应的生成器,是两种风格可以彼此迁移,生成对应风格的图像。
在这里插入图片描述

另外一个重要的部分就是损失函数,这里使用的是Cycle Consistency Loss循环一致损失。过程是首先将x输入将风格X转化为风格Y的生成器G,生成伪y,再将伪y输入将风格Y转化为风格X的生成器F,生成伪x。最终将伪x和x一起计算出损失。
在这里插入图片描述

实验

数据集处理

本章使用的数据集图片来源为ImageNet,包含17个数据包。本章中仅使用橘子苹果部分,图像示例如下:
在这里插入图片描述

生成器构建

这里使用ResNet结构,大小128128的图片使用6个残差块连接,大小256256的图片使用9个残差块连接. 残差块的块数由n_layers控制。
在这里插入图片描述

import mindspore.nn as nn
import mindspore.ops as ops
from mindspore.common.initializer import Normal

weight_init = Normal(sigma=0.02)

 # 构建卷积、归一化、激活函数结构
class ConvNormReLU(nn.Cell):
    def __init__(self, input_channel, out_planes, kernel_size=4, stride=2, alpha=0.2, norm_mode='instance',
                 pad_mode='CONSTANT', use_relu=True, padding=None, transpose=False):
        super(ConvNormReLU, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if padding is None:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride, pad_mode='same',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                 has_bias=has_bias, padding=padding, weight_init=weight_init)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            if transpose:
                conv = nn.Conv2dTranspose(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                          has_bias=has_bias, weight_init=weight_init)
            else:
                conv = nn.Conv2d(input_channel, out_planes, kernel_size, stride, pad_mode='pad',
                                 has_bias=has_bias, weight_init=weight_init)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

# 构建残差块
class ResidualBlock(nn.Cell):
    def __init__(self, dim, norm_mode='instance', dropout=False, pad_mode="CONSTANT"):
        super(ResidualBlock, self).__init__()
        self.conv1 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode)
        self.conv2 = ConvNormReLU(dim, dim, 3, 1, 0, norm_mode, pad_mode, use_relu=False)
        self.dropout = dropout
        if dropout:
            self.dropout = nn.Dropout(p=0.5)

    def construct(self, x):
        out = self.conv1(x)
        if self.dropout:
            out = self.dropout(out)
        out = self.conv2(out)
        return x + out

构建生成器

class ResNetGenerator(nn.Cell):
    def __init__(self, input_channel=3, output_channel=64, n_layers=9, alpha=0.2, norm_mode='instance', dropout=False,
                 pad_mode="CONSTANT"):
        super(ResNetGenerator, self).__init__()
        self.conv_in = ConvNormReLU(input_channel, output_channel, 7, 1, alpha, norm_mode, pad_mode=pad_mode)
        self.down_1 = ConvNormReLU(output_channel, output_channel * 2, 3, 2, alpha, norm_mode)
        self.down_2 = ConvNormReLU(output_channel * 2, output_channel * 4, 3, 2, alpha, norm_mode)
        layers = [ResidualBlock(output_channel * 4, norm_mode, dropout=dropout, pad_mode=pad_mode)] * n_layers
        self.residuals = nn.SequentialCell(layers)
        self.up_2 = ConvNormReLU(output_channel * 4, output_channel * 2, 3, 2, alpha, norm_mode, transpose=True)
        self.up_1 = ConvNormReLU(output_channel * 2, output_channel, 3, 2, alpha, norm_mode, transpose=True)
        if pad_mode == "CONSTANT":
            self.conv_out = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1, pad_mode='pad',
                                      padding=3, weight_init=weight_init)
        else:
            pad = nn.Pad(paddings=((0, 0), (0, 0), (3, 3), (3, 3)), mode=pad_mode)
            conv = nn.Conv2d(output_channel, 3, kernel_size=7, stride=1, pad_mode='pad', weight_init=weight_init)
            self.conv_out = nn.SequentialCell([pad, conv])

    def construct(self, x):
        x = self.conv_in(x)
        x = self.down_1(x)
        x = self.down_2(x)
        x = self.residuals(x)
        x = self.up_2(x)
        x = self.up_1(x)
        output = self.conv_out(x)
        return ops.tanh(output)
# 实例化生成器
net_rg_a = ResNetGenerator()
net_rg_a.update_parameters_name('net_rg_a.')

net_rg_b = ResNetGenerator()
net_rg_b.update_parameters_name('net_rg_b.')

构建判别器

这里使用PatchGAN,和Pix2Pix实现方式一样,最终使用Sigmoid激活函数得到最终概率。

# 定义判别器
class Discriminator(nn.Cell):
    def __init__(self, input_channel=3, output_channel=64, n_layers=3, alpha=0.2, norm_mode='instance'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [nn.Conv2d(input_channel, output_channel, kernel_size, 2, pad_mode='pad', padding=1, weight_init=weight_init),
                  nn.LeakyReLU(alpha)]
        nf_mult = output_channel
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * output_channel
            layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * output_channel
        layers.append(ConvNormReLU(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1, weight_init=weight_init))
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output
# 判别器初始化
net_d_a = Discriminator()
net_d_a.update_parameters_name('net_d_a.')

net_d_b = Discriminator()
net_d_b.update_parameters_name('net_d_b.')

优化器和损失函数

对于G和其判别器Dy,目标损失函数定义为 L G A N ( G , D Y , X , Y ) = E y − p d a t a ( y ) [ l o g D Y ( y ) ] + E x − p d a t a ( x ) [ l o g ( 1 − D Y ( G ( x ) ) ) ] L_{GAN}(G,D_Y,X,Y)=E_{y-p_{data}(y)}[logD_Y(y)]+E_{x-p_{data}(x)}[log(1-D_Y(G(x)))] LGAN(G,DY,X,Y)=Eypdata(y)[logDY(y)]+Expdata(x)[log(1DY(G(x)))]
其中 G G G 试图生成看起来与 Y Y Y 中的图像相似的图像 G ( x ) G(x) G(x) ,而 D Y D_{Y} DY 的目标是区分翻译样本 G ( x ) G(x) G(x) 和真实样本 y y y ,生成器的目标是最小化这个损失函数以此来对抗判别器。即 $ min_{G} max_{D_{Y}}L_{GAN}(G,D_{Y} ,X,Y )$ 。

而对于两个生成器而言,使用了此前介绍的循环一致性损失函数,具体定义为
L c y c ( G , F ) = E x − p d a t a ( x ) [ ∥ F ( G ( x ) ) − x ∥ 1 ] + E y − p d a t a ( y ) [ ∥ G ( F ( y ) ) − y ∥ 1 ] L_{cyc}(G,F)=E_{x-p_{data}(x)}[\Vert F(G(x))-x\Vert_{1}]+E_{y-p_{data}(y)}[\Vert G(F(y))-y\Vert_{1}] Lcyc(G,F)=Expdata(x)[F(G(x))x1]+Eypdata(y)[G(F(y))y1]
循环一致损失能够保证重建图像 F ( G ( x ) ) F(G(x)) F(G(x)) 与输入图像 x x x 紧密匹配。

构建生成器,判别器优化器

optimizer_rg_a = nn.Adam(net_rg_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_rg_b = nn.Adam(net_rg_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

optimizer_d_a = nn.Adam(net_d_a.trainable_params(), learning_rate=0.0002, beta1=0.5)
optimizer_d_b = nn.Adam(net_d_b.trainable_params(), learning_rate=0.0002, beta1=0.5)

# GAN网络损失函数,这里最后一层不使用sigmoid函数
loss_fn = nn.MSELoss(reduction='mean')
l1_loss = nn.L1Loss("mean")

def gan_loss(predict, target):
    target = ops.ones_like(predict) * target
    loss = loss_fn(predict, target)
    return loss

前向计算

为了减少模型震荡,这里的策略是使用生成器生成图像的历史数据而不是最新生成的图像数据来更新判别器。创建了image_poll函数,保留了图像缓存区,存储前50个图像。

# 前向计算

def generator(img_a, img_b):
    fake_a = net_rg_b(img_b)
    fake_b = net_rg_a(img_a)
    rec_a = net_rg_b(fake_b)
    rec_b = net_rg_a(fake_a)
    identity_a = net_rg_b(img_a)
    identity_b = net_rg_a(img_b)
    return fake_a, fake_b, rec_a, rec_b, identity_a, identity_b

lambda_a = 10.0
lambda_b = 10.0
lambda_idt = 0.5

def generator_forward(img_a, img_b):
    true = Tensor(True, dtype.bool_)
    fake_a, fake_b, rec_a, rec_b, identity_a, identity_b = generator(img_a, img_b)
    loss_g_a = gan_loss(net_d_b(fake_b), true)
    loss_g_b = gan_loss(net_d_a(fake_a), true)
    loss_c_a = l1_loss(rec_a, img_a) * lambda_a
    loss_c_b = l1_loss(rec_b, img_b) * lambda_b
    loss_idt_a = l1_loss(identity_a, img_a) * lambda_a * lambda_idt
    loss_idt_b = l1_loss(identity_b, img_b) * lambda_b * lambda_idt
    loss_g = loss_g_a + loss_g_b + loss_c_a + loss_c_b + loss_idt_a + loss_idt_b
    return fake_a, fake_b, loss_g, loss_g_a, loss_g_b, loss_c_a, loss_c_b, loss_idt_a, loss_idt_b

def generator_forward_grad(img_a, img_b):
    _, _, loss_g, _, _, _, _, _, _ = generator_forward(img_a, img_b)
    return loss_g

def discriminator_forward(img_a, img_b, fake_a, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    loss_d = (loss_d_a + loss_d_b) * 0.5
    return loss_d

def discriminator_forward_a(img_a, fake_a):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_a = net_d_a(fake_a)
    d_img_a = net_d_a(img_a)
    loss_d_a = gan_loss(d_fake_a, false) + gan_loss(d_img_a, true)
    return loss_d_a

def discriminator_forward_b(img_b, fake_b):
    false = Tensor(False, dtype.bool_)
    true = Tensor(True, dtype.bool_)
    d_fake_b = net_d_b(fake_b)
    d_img_b = net_d_b(img_b)
    loss_d_b = gan_loss(d_fake_b, false) + gan_loss(d_img_b, true)
    return loss_d_b

# 保留了一个图像缓冲区,用来存储之前创建的50个图像
pool_size = 50
def image_pool(images):
    num_imgs = 0
    image1 = []
    if isinstance(images, Tensor):
        images = images.asnumpy()
    return_images = []
    for image in images:
        if num_imgs < pool_size:
            num_imgs = num_imgs + 1
            image1.append(image)
            return_images.append(image)
        else:
            if random.uniform(0, 1) > 0.5:
                random_id = random.randint(0, pool_size - 1)

                tmp = image1[random_id].copy()
                image1[random_id] = image
                return_images.append(tmp)

            else:
                return_images.append(image)
    output = Tensor(return_images, ms.float32)
    if output.ndim != 4:
        raise ValueError("img should be 4d, but get shape {}".format(output.shape))
    return output

计算梯度及反向传播

from mindspore import value_and_grad

# 实例化求梯度的方法
grad_g_a = value_and_grad(generator_forward_grad, None, net_rg_a.trainable_params())
grad_g_b = value_and_grad(generator_forward_grad, None, net_rg_b.trainable_params())

grad_d_a = value_and_grad(discriminator_forward_a, None, net_d_a.trainable_params())
grad_d_b = value_and_grad(discriminator_forward_b, None, net_d_b.trainable_params())

# 计算生成器的梯度,反向传播更新参数
def train_step_g(img_a, img_b):
    net_d_a.set_grad(False)
    net_d_b.set_grad(False)

    fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib = generator_forward(img_a, img_b)

    _, grads_g_a = grad_g_a(img_a, img_b)
    _, grads_g_b = grad_g_b(img_a, img_b)
    optimizer_rg_a(grads_g_a)
    optimizer_rg_b(grads_g_b)

    return fake_a, fake_b, lg, lga, lgb, lca, lcb, lia, lib

# 计算判别器的梯度,反向传播更新参数
def train_step_d(img_a, img_b, fake_a, fake_b):
    net_d_a.set_grad(True)
    net_d_b.set_grad(True)

    loss_d_a, grads_d_a = grad_d_a(img_a, fake_a)
    loss_d_b, grads_d_b = grad_d_b(img_b, fake_b)

    loss_d = (loss_d_a + loss_d_b) * 0.5

    optimizer_d_a(grads_d_a)
    optimizer_d_b(grads_d_b)

    return loss_d

模型训练

依然分成判别器的训练和生成器的训练。

  • 训练判别器:训练判别器的目的是最大程度地提高判别图像真伪的概率。按照论文的方法需要训练判别器来最小化 E y − p d a t a ( y ) [ ( D ( y ) − 1 ) 2 ] E_{y-p_{data}(y)}[(D(y)-1)^2] Eypdata(y)[(D(y)1)2]
  • 训练生成器:如 CycleGAN 论文所述,我们希望通过最小化 E x − p d a t a ( x ) [ ( D ( G ( x ) − 1 ) 2 ] E_{x-p_{data}(x)}[(D(G(x)-1)^2] Expdata(x)[(D(G(x)1)2] 来训练生成器,以产生更好的虚假图像。
import os
import time
import random
import numpy as np
from PIL import Image
from mindspore import Tensor, save_checkpoint
from mindspore import dtype

# 由于时间原因,epochs设置为1,可根据需求进行调整
epochs = 1
save_step_num = 80
save_checkpoint_epochs = 1
save_ckpt_dir = './train_ckpt_outputs/'

print('Start training!')

for epoch in range(epochs):
    g_loss = []
    d_loss = []
    start_time_e = time.time()
    for step, data in enumerate(dataset.create_dict_iterator()):
        start_time_s = time.time()
        img_a = data["image_A"]
        img_b = data["image_B"]
        res_g = train_step_g(img_a, img_b)
        fake_a = res_g[0]
        fake_b = res_g[1]

        res_d = train_step_d(img_a, img_b, image_pool(fake_a), image_pool(fake_b))
        loss_d = float(res_d.asnumpy())
        step_time = time.time() - start_time_s

        res = []
        for item in res_g[2:]:
            res.append(float(item.asnumpy()))
        g_loss.append(res[0])
        d_loss.append(loss_d)

        if step % save_step_num == 0:
            print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
                  f"step:[{int(step):>4d}/{int(datasize):>4d}], "
                  f"time:{step_time:>3f}s,\n"
                  f"loss_g:{res[0]:.2f}, loss_d:{loss_d:.2f}, "
                  f"loss_g_a: {res[1]:.2f}, loss_g_b: {res[2]:.2f}, "
                  f"loss_c_a: {res[3]:.2f}, loss_c_b: {res[4]:.2f}, "
                  f"loss_idt_a: {res[5]:.2f}, loss_idt_b: {res[6]:.2f}")

    epoch_cost = time.time() - start_time_e
    per_step_time = epoch_cost / datasize
    mean_loss_d, mean_loss_g = sum(d_loss) / datasize, sum(g_loss) / datasize

    print(f"Epoch:[{int(epoch + 1):>3d}/{int(epochs):>3d}], "
          f"epoch time:{epoch_cost:.2f}s, per step time:{per_step_time:.2f}, "
          f"mean_g_loss:{mean_loss_g:.2f}, mean_d_loss:{mean_loss_d :.2f}")

    if epoch % save_checkpoint_epochs == 0:
        os.makedirs(save_ckpt_dir, exist_ok=True)
        save_checkpoint(net_rg_a, os.path.join(save_ckpt_dir, f"g_a_{epoch}.ckpt"))
        save_checkpoint(net_rg_b, os.path.join(save_ckpt_dir, f"g_b_{epoch}.ckpt"))
        save_checkpoint(net_d_a, os.path.join(save_ckpt_dir, f"d_a_{epoch}.ckpt"))
        save_checkpoint(net_d_b, os.path.join(save_ckpt_dir, f"d_b_{epoch}.ckpt"))

模型推理

加载模型参数完成对原图的风格迁移。

import os
from PIL import Image
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
from mindspore import load_checkpoint, load_param_into_net

# 加载权重文件
def load_ckpt(net, ckpt_dir):
    param_GA = load_checkpoint(ckpt_dir)
    load_param_into_net(net, param_GA)

g_a_ckpt = './CycleGAN_apple2orange/ckpt/g_a.ckpt'
g_b_ckpt = './CycleGAN_apple2orange/ckpt/g_b.ckpt'

load_ckpt(net_rg_a, g_a_ckpt)
load_ckpt(net_rg_b, g_b_ckpt)

# 图片推理
fig = plt.figure(figsize=(11, 2.5), dpi=100)
def eval_data(dir_path, net, a):

    def read_img():
        for dir in os.listdir(dir_path):
            path = os.path.join(dir_path, dir)
            img = Image.open(path).convert('RGB')
            yield img, dir

    dataset = ds.GeneratorDataset(read_img, column_names=["image", "image_name"])
    trans = [vision.Resize((256, 256)), vision.Normalize(mean=[0.5 * 255] * 3, std=[0.5 * 255] * 3), vision.HWC2CHW()]
    dataset = dataset.map(operations=trans, input_columns=["image"])
    dataset = dataset.batch(1)
    for i, data in enumerate(dataset.create_dict_iterator()):
        img = data["image"]
        fake = net(img)
        fake = (fake[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))
        img = (img[0] * 0.5 * 255 + 0.5 * 255).astype(np.uint8).transpose((1, 2, 0))

        fig.add_subplot(2, 8, i+1+a)
        plt.axis("off")
        plt.imshow(img.asnumpy())

        fig.add_subplot(2, 8, i+9+a)
        plt.axis("off")
        plt.imshow(fake.asnumpy())

eval_data('./CycleGAN_apple2orange/predict/apple', net_rg_a, 0)
eval_data('./CycleGAN_apple2orange/predict/orange', net_rg_b, 4)
plt.show()

可以看到已经完成了橘子和苹果的风格迁移。
在这里插入图片描述

总结

本章依然实现了一个基于GAN的模型,使用CycleGAN完成了风格迁移任务。CycleGAN使用镜像的结构,利用循环一致性损失函数来计算原图片和生成的伪图之间的损失。

打卡凭证

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1953542.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DosSnake-入土为安第八天

记录一下不能F5反编译 加密方式 密文 异或操作函数 xor_string_with_key&#xff1a; 接受两个字符串作为输入&#xff1a;待处理的 text 和 key。对每个字符进行异或操作。使用 ord(char) 获取字符的 ASCII 值&#xff0c;ord(key[i % key_length]) 是 key 中对应位置的字符的…

3D Web轻量化引擎HOOPS Communicator针对复杂大模型Web端可视化的解决方案

随着工程设计、制造和建筑领域中三维模型的日益复杂化&#xff0c;如何在Web端高效处理和展示这些大规模数据成为一大挑战。HOOPS Communicator作为一款强大的3D可视化工具&#xff0c;提供了一套针对复杂大模型的轻量化解决方案&#xff0c;涵盖了模型轻量化及格式转换、超大模…

【基础算法总结】队列 + 宽搜(BFS)

队列 宽搜BFS 1.N 叉树的层序遍历2.二叉树的锯齿形层序遍历3.二叉树最大宽度4.在每个树行中找最大值 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&#…

活动报名小程序

#活动报名工具# # 活动报名小程序 ## 项目简介 一款通用的活动报名工具&#xff0c;包含活动展示&#xff0c;微信支付&#xff0c;订单管理&#xff0c;分享评价等功能。 品客聚精彩&#xff0c;有你才精彩&#xff01;不只有线下活动还可以进行线上裂变活动。 …

SpringBoot知识笔记

一、基本概念 1.1 特性 起步依赖 自动配置 其它特性:内嵌的Tomcat、Jetty(无需部署WAR文件),外部配置,不需要XML配置(properties/yml)。 1.2 配置文件 SpringBoot提供了多种属性配置方式 //application.properties server.port=9090 server.servlet.context-path…

自从与泰勒斯威夫特约会以来,特拉维斯凯尔西表现得像布拉德皮特一样挥霍打扮

今年对于泰勒斯威夫特和特拉维斯凯尔西来说可谓是风云变幻的一年&#xff0c;他们秘密开始约会&#xff0c;然后有了今年最引人瞩目的恋情。对于这位 NFL 运动员来说&#xff0c;这是一个巨大的变化&#xff0c;因为随着斯威夫特的粉丝们了解了凯尔西家族的一切&#xff0c;他的…

人机交互不仅仅是科技问题

人机交互不仅仅局限于物理和数理科学的应用&#xff0c;还涉及到更广泛的管理、文理、哲学、艺术、伦理以及法律等领域。下面这些领域在人机协同和智能系统应用中扮演着重要角色&#xff1a; 智能系统在企业管理、资源分配、决策支持等方面的应用&#xff0c;可以帮助管理者优化…

自学网络安全,从小白到大神的破茧之路!

在当今数字化高速发展的时代&#xff0c;网络安全已经成为了至关重要的领域。无论是个人的隐私保护&#xff0c;还是企业、国家的关键信息资产维护&#xff0c;都离不开网络安全的有力保障。出于对这一领域的浓厚兴趣以及对未来职业发展的清晰规划&#xff0c;我毅然决然地踏上…

基于物联网的区块链算力网络,IGP/BGP协议

目录 基于物联网的区块链算力网络 IGP/BGP协议 IGP(内部网关协议) BGP(边界网关协议) 内部使用ISP的外部使用BGP的原因 一、网络规模和复杂性 二、路由协议的特性 三、满足业务需求 四、结论 基于物联网的区块链算力网络 通 过 多个物联网传感器将本地计算…

科普文:kubernets原理

kubernetes 已经成为容器编排领域的王者&#xff0c;它是基于容器的集群编排引擎&#xff0c;具备扩展集群、滚动升级回滚、弹性伸缩、自动治愈、服务发现等多种特性能力。 本文将带着大家快速了解 kubernetes &#xff0c;了解我们谈论 kubernetes 都是在谈论什么。 一、背…

Godot入门 08敌人

添加Node2D节点&#xff0c;添加AnimatedSprite2D节点。 从精灵表中添加帧 设置加载后自动播放&#xff0c;10FPS&#xff0c;并拖动动画到水平线上 插入死亡区域场景 添加CollisionShape2D节点&#xff0c;设置矩形碰撞形状。按住ALT可对称修改碰撞形状。 重命名Node2D为Slim…

数据结构之探索“堆”的奥秘

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a;数据结构&#xff08;Java版&#xff09; 目录 堆的概念 堆的创建 时间复杂度分析&#xff1a; 堆的插入与删除 优先级队列 PriorityQ…

nodejs - express 学习笔记

express 是一个基于 Node.js 平台的极简、灵活的 WEB 应用开发框架&#xff0c;官方网址&#xff1a;https://www.expressjs. com.cn/ 简单来说&#xff0c;express 是一个封装好的工具包&#xff0c;封装了很多功能&#xff0c;便于我们开发 WEB 应用&#xff08;HTTP 服务&am…

TinyALSA 简介

TinyALSA 是一个轻量级的 ALSA&#xff08;Advanced Linux Sound Architecture&#xff0c;高级 Linux 音频架构&#xff09;实现&#xff0c;用于与 Linux 内核中的 ALSA&#xff08;高级 Linux 声音架构&#xff09;进行交互&#xff0c;旨在为嵌入式系统和资源受限的设备提供…

提取视频中的文字如何提取?分享4种简单提取方法

在短视频时代&#xff0c;视频已成为信息传播的重要载体。然而&#xff0c;面对海量的视频资源&#xff0c;如何高效提取其中的文字信息&#xff0c;成为许多人关注的焦点&#xff0c;因为快速提取出视频中的文字可以帮助我们整理、编辑文本信息&#xff0c;下面给大家分享4种简…

Linux 基础开发工具 : Vim编辑器

Vim 是 Linux 和其他类 Unix 系统上广泛使用的文本编辑器之一。它基于更早的 vi 编辑器&#xff0c;但添加了许多增强功能和扩展。Vim 是“Vi IMproved”的缩写&#xff0c;意为“改进的 Vi”&#xff0c;我们常使用Vim编辑器编写c/c代码。 ps&#xff1a;该篇介绍均为最基础介…

【LeetCode:3106. 满足距离约束且字典序最小的字符串 + 贪心】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

谷粒商城实战-58-商品服务-API-三级分类-删除-批量删除小结

文章目录 一&#xff0c;增加一个批量删除的按钮并绑定事件二&#xff0c;全栈工程师三&#xff0c;逆向工程在全栈开发中的应用提升效率的方式&#xff1a;使用案例&#xff1a; 这一节的主要内容是开发批量删除分类的功能。 一&#xff0c;增加一个批量删除的按钮并绑定事件 …

数论第一节:整数的可除性

[TOC ] 1、整除的概念 整除&#xff1a; 设a&#xff0c;b∈Z&#xff0c;若存在整数c∈Z&#xff0c;s.t. a bc&#xff0c;则称b整除a&#xff0c;记为 b ∣ a b|a b∣a否则称b不整除a。 带余除法&#xff1a; 设 a &#xff0c; b ∈ z a&#xff0c;b∈z a&#xff0c;b∈…

Jupyter notebook无法自动关联打开浏览器,怎么办?

最近为了方便进行数据分析和处理&#xff0c;在电脑上安装了Anaconda。 Anaconda 是一个功能强大的数据科学平台&#xff0c;它包含了‌conda、Python以及180多个科学包及其依赖项。 Anaconda 常常用于科学计算、数据分析和人工智能等领域&#xff0c;并且得到了广大开发者的…