昇思25天学习打卡营第25天|基于 MindSpore 实现 BERT 对话情绪识别

news2024/11/24 13:07:36

在这里插入图片描述

基于 MindSpore 实现 BERT 对话情绪识别

模型概述

BERT(双向编码器表征量)是Google于2018年发布的一种先进语言模型,基于Transformer架构,具备双向上下文理解功能。BERT的预训练方法创新性地结合了两种任务:

  1. Masked Language Model (MLM):在训练过程中随机掩盖15%的单词,进行三种处理:

    • 80%的单词用[Mask]替换。
    • 10%的单词用其他随机单词替换。
    • 10%的单词保持不变。

    这一方法使模型能够学习上下文中的词语关系。

  2. Next Sentence Prediction (NSP):该任务旨在帮助模型理解句子之间的逻辑关系。输入为两个句子A和B,其中一半的B是A的下一句,模型需要预测B是否为A的后续句子。

经过预训练,BERT保存了其词嵌入和Transformer权重,支持下游任务的微调,如文本分类、相似度判断和阅读理解等。

对话情绪识别

对话情绪识别(Emotion Detection)专注于在智能对话中自动识别用户情绪,分类为积极、消极或中性。该技术在聊天机器人和客户服务中尤为重要,能够帮助企业提升对话质量,优化用户交互体验,并降低人工质检成本。

数据集

本项目使用的情绪识别数据集来自百度飞桨团队,包含标注好的机器人聊天记录。数据集结构为两列,使用制表符(‘\t’)分隔:

  • 第一列为情绪标签(0:消极;1:中性;2:积极)。
  • 第二列为经过分词的文本内容。

示例数据:

label--text_a
0--谁骂人了?我从来不骂人,我骂的都不是人,你是人吗?
1--我有事等会儿就回来和你聊
2--我见到你很高兴谢谢你帮我
数据预处理

数据预处理步骤包括:

  • 数据加载:读取数据文件并进行格式转换。
  • Tokenize处理:将文本分解为词语。
  • Padding操作:对不同长度的文本进行填充,确保输入一致性。

由于在昇腾NPU环境下不支持动态Shape,预处理采用静态Shape方式。

模型构建

模型使用BertForSequenceClassification构建情感分类器,加载预训练权重,设置情感三分类的超参数。训练过程中应用自动混合精度技术,以提高训练速度和性能。主要步骤包括:

  1. 实例化优化器。
  2. 设置评价指标(例如准确率)。
  3. 定义模型训练的权重保存策略。
  4. 构建训练器并开始训练。

模型验证与推理

在模型训练完成后,使用验证集评估模型的效果,主要关注准确率等指标,以确定模型的性能。

推理阶段

推理阶段涉及以下步骤:

  • 遍历推理数据集,使用训练好的模型进行情感预测。
  • 将预测结果与真实标签进行比对,展示模型的效果。

此外,用户还可以输入自定义数据进行推理,测试模型在不同情境下的泛化能力。

总结

通过BERT模型实现对话情绪识别,不仅能够有效识别用户情感,还能在实际应用中提升用户体验及服务质量。这一技术在智能客服和社交聊天场景中的应用价值显著。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1951258.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高级网页爬虫开发:Scrapy和BeautifulSoup的深度整合

引言 在互联网时代,数据的价值日益凸显。网页爬虫作为一种自动化获取网页内容的工具,广泛应用于数据挖掘、市场分析、内容聚合等领域。Scrapy是一个强大的网页爬虫框架,而BeautifulSoup则是一个灵活的HTML和XML文档解析库。本文将探讨如何将…

凸优化笔记-基本概念

原文 文章目录 最小二乘问题 仿射affine hullaffine dimension 凸集锥集超平面和半空间单纯形整半定锥保凸性的操作透视函数 凸函数的条件1阶判定条件2阶判定条件 Epigraph 外图 m i n i m i z e f 0 ( x ) minimize\ \ \ f_0(x) minimize f0​(x) s u b j e c t t o f i ( …

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」 前言1.爬虫概念1.1 什么是爬虫?1.2 爬虫的工作原理 2. HTTP 简述2.1 什么是 HTTP?2.2 HTTP 请求2.3 HTTP 响应2.4 常见的 HTTP 方法 3. 网页的组成3.1 HTML3.1.1 HTM…

Debug下载与安装(Windows11)

前言 在安装配置前我们先下载一下我们需要用的文件 下载debug 百度网盘下载 下载DOSBox DOSBox 两个文件下载好后我们就开始安装和配置了 第一步:安装DOSBox 第二步:安装好后找到安装路径找到Options.bat文件并打开 第三步:在文件最下…

图片变色,背景方向渐变web

<!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>图片变色</title> <script src"03.JS\3.8JS案例加强\JQuery.js"></script> <style> .image-filter…

nvm 安装和遇到的问题

环境 win 11 安装 下载安装包 访问 https://github.com/coreybutler/nvm-windows/releases 选择需要的版本继续下载安装基本是可以下一步下一步的啦&#x1f92d; 安装 node 我这里需要16.x.x的node&#xff0c;执行以下命令 nvm install 16使用 node nvm use 16问题 …

苹果CMS V10萌芽采集插件Pro v10.7.3

苹果CMS V10萌芽采集插件Pro v10.7.3 插件下载:萌芽采集插件Pro v10.7.3.zip 使用说明: 将addons文件和static文件放到你苹果cms程序的根目录并覆盖&#xff0c; 在登录后台在应用-应用市场启用。http://你的域名/admin.php/admin/mycj/union.html

卷积的意义及其派生(一)

1.卷积的意义 1.1从LTI的角度看 卷积最开始其实是信号处理中用来描述线性移不变系统Linear time-invariant systems的。线性&#xff0c;表明可以叠加&#xff0c;信号可以拆分成脉冲的响应&#xff1b;时不变&#xff0c;指信号不随着时间的迁移改变&#xff0c;意味着能量守…

计算机网络(Wrong Question)

一、计算机网络体系结构 1.1 计算机网络概述 D 注&#xff1a;计算机的三大主要功能是数据通信、资源共享、分布式处理。&#xff08;负载均衡、提高可靠性&#xff09; 注&#xff1a;几段链路就是几段流水。 C 注&#xff1a;记住一个基本计算公式&#xff1a;若n个分组&a…

C语言程序设计(二)

四.找素数 素数&#xff1a;除了1和它本身不再有其他因数的自然数。换句话说&#xff1a;一个大于1的自然数 &#xff0c;如果只能被1和它本身整除&#xff0c;那就是素数&#xff08;质数&#xff09;。 在打印中遇到的问题就是&#xff0c;知道怎么写却总是运行不起来。主要…

苦学Opencv的第十一天:图像的形态学操作

Python OpenCV从入门到精通学习日记&#xff1a;图像的形态学操作 前言 图像形态学是图像处理中的一个重要分支&#xff0c;主要关注图像中物体的形状和结构。通过形态学操作&#xff0c;我们可以对图像进行有效的分析和处理&#xff0c;例如图像的腐蚀与膨胀、开运算与闭运算…

Java 并发编程:一文了解 Java 内存模型(处理器优化、指令重排序与内存屏障的深层解析)

大家好&#xff0c;我是栗筝i&#xff0c;这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 022 篇文章&#xff0c;在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验&#xff0c;并希望进…

VIN解析汽车详情|阿里云实现调用API接口

介绍&#xff1a; 本次解析通过阿里云云市场的云服务来实现通过17位车架号来自动识别车型的详细信息&#xff0c;首先需要准备选择一家可以提供查询的商品。 https://market.aliyun.com/apimarket/detail/cmapi00065864#skuyuncode5986400001 步骤1: 选择商品 如图点击免费…

【微软蓝屏】微软Windows蓝屏问题汇总与应对解决策略

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

关键词查找【Knuth-Morris-Pratt (KMP) 算法】

一个视频让你彻底学懂KMP算法_哔哩哔哩_bilibili KMP算法的核心是利用匹配失败后的信息&#xff0c;尽量减少模式串与主串的匹配次数以达到快速匹配的目的。 第一步&#xff1a;计算模式串(子串)和next[j]数组 模式串 前2位字母的next[j]固定是0 和 1 后续字母的nex[j]&…

项目实战——外挂开发(30小时精通C++和外挂实战)

项目实战——外挂开发&#xff08;30小时精通C和外挂实战&#xff09; 外挂开发1-监控游戏外挂开发2-秒杀僵尸外挂开发3-阳光地址分析外挂开发4-模拟阳光外挂开发5-无限阳光 外挂开发1-监控游戏 外挂的本质 有两种方式 1&#xff0c;修改内存中的数据 2&#xff0c;更改内存中…

跟李沐学AI:池化层

目录 二维最大池化 填充、步幅和多个通道 平均池化层 池化层总结 二维最大池化 返回滑动窗口中的最大值。 图为池化窗口形状为 22 的最大池化层。着色部分是第一个输出元素&#xff0c;以及用于计算这个输出的输入元素: max(0,1,3,4)4。池化层与卷积层类似&#xff0c;不断…

数据库中的事务

一、理解事务 1、本质 事务由一组DML语句组成&#xff0c;这一组语句要么全部成功&#xff0c;要么全部失败。在逻辑上&#xff0c;事务就是一组sql语句&#xff0c;但在实际中&#xff0c;公共的数据库一定会高并发地接受各种事务的请求&#xff0c;所以一个事务要有4个属性…

centos7 xtrabackup mysql(8)增量备份(1)

centos7 xtrabackup mysql&#xff08;8&#xff09;增量备份&#xff08;1&#xff09; 参考 xtrabackup-8.0的安装、备份以及恢复&#xff08;innoxtrabackup有待测试&#xff09; https://blog.csdn.net/DWJRIVER/article/details/117792271 https://blog.csdn.net/qq_28…