凸优化笔记-基本概念

news2024/11/24 12:24:55

原文

文章目录

      • 最小二乘问题
    • 仿射
      • affine hull
      • affine dimension
    • 凸集
      • 锥集
      • 超平面和半空间
      • 单纯形
      • 整半定锥
      • 保凸性的操作
      • 透视函数
    • 凸函数的条件
      • 1阶判定条件
      • 2阶判定条件
    • Epigraph 外图

m i n i m i z e     f 0 ( x ) minimize\ \ \ f_0(x) minimize   f0(x)
s u b j e c t   t o     f i ( x ) ≤ b i , i = 1 , . . . , m subject\ to\ \ \ f_i(x)\le b_i, i = 1,...,m subject to   fi(x)bi,i=1,...,m

凸优化问题
f i ( α x + β y ) ≤ α f i ( x ) + β f i ( y ) ,   x , y ∈ R n , α + β = 1 , α ≥ 0 , β ≥ 0 f_i(\alpha x+\beta y) \le \alpha f_i(x)+\beta f_i(y), \ x,y\in R^n, \alpha +\beta = 1,\alpha \ge 0,\beta\ge 0 fi(αx+βy)αfi(x)+βfi(y), x,yRn,α+β=1,α0,β0
所有的函数都是凸函数时这个规划问题成为凸优化问题。

最小二乘问题

无约束条件下
m i n i m i z e ∣ ∣ A x − b ∣ ∣ 2 2 minimize ||Ax-b||_2^2 minimize∣∣Axb22
A T A x = A T b A^TAx = A^Tb ATAx=ATb
x = ( A T A ) − 1 A T b x = (A^TA)^{-1}A^Tb x=(ATA)1ATb
A ∈ R k × n , k ≥ n A\in R^{k\times n},k\ge n ARk×n,kn
此处可以猜想一下,举例如k个点拟合一条直线。k个方程求解n个自变量。
带权的最小二乘
Σ w i ( a i T x − b ) \Sigma w_i(a_i^Tx-b) Σwi(aiTxb)

regularization
Σ i = 1 k ( a i T x − b i ) 2 + ρ Σ i = 1 n x i 2 \Sigma_{i=1}^k(a_i^Tx-b_i)^2 + \rho \Sigma_{i=1}^n x_i^2 Σi=1k(aiTxbi)2+ρΣi=1nxi2

线性规划
切比雪夫近似问题
m i n i m i z e   m a x i = 1... k   ∣ a i T x − b i ∣ minimize\ max_{i=1...k}\ |a_i^Tx-b_i| minimize maxi=1...k aiTxbi
与最小二乘不同,不使用平方而是使用极大值——一阶矩?1范数
不可微
转化为
m i n i m i z e   t minimize\ t minimize t
s u b j e c t   t o   a i T x − t ≤ b i , − a i T x − t ≤ − b i subject\ to\ a_i^Tx-t\le b_i,-a_i^Tx-t\le-b_i subject to aiTxtbi,aiTxtbi
内点法?

仿射

仿射集合:一个集合 C 在一个向量空间中被称为仿射集合,如果对于集合 CC 中的任意两个点 x 和 y,以及任意实数 α,其中 0≤α≤1,集合 CC 都包含点 (1−α)x+αy。

线性方程组的解集是一个仿射集合

A x = b Ax=b Ax=b的解 x 1 ≠ x 2 x_1\not=x_2 x1=x2
A x 1 = b , A x 2 = b Ax_1=b,Ax_2=b Ax1=b,Ax2=b
A ( α x 1 + β x 2 ) = A ( α x 1 ) + A ( β x 2 ) = ( α + β ) b = b A(\alpha x_1 +\beta x_2) =A(\alpha x_1)+A(\beta x_2)= (\alpha+\beta)b = b A(αx1+βx2)=A(αx1)+A(βx2)=(α+β)b=b

affine hull

The set of all affine combinations of points in some set C ⊆ Rn is called the affine hull of C, and denoted aff C

在欧几里得空间 Rn 中,一个集合 C 的仿射包(affine hull)是指所有包含在集合 C 中的点的仿射组合的集合。换句话说,它是通过 C中任意有限个点 x1,x2,…,xk的所有可能的线性组合的集合。
仿射包的理解?

aff   C = { θ 1 x 1 + . . . + θ n x n ∣ x k ∈ C , Σ θ i = 1 } \textbf{aff}\ C = \{\theta_1x_1+...+\theta_nx_n |x_k\in C,\Sigma\theta_i=1 \} aff C={θ1x1+...+θnxnxkC,Σθi=1}

affine dimension

集合C的仿射维度定义为他的仿射包(?)
例:对单位圆上的点
{ x ∈ R 2 ∣ x 1 2 + x 2 2 = 1 } \{x\in R^2|x_1^2+x_2^2 = 1 \} {xR2x12+x22=1}
其仿射包是 R 2 R^2 R2(单位圆上的点通过线性组合可以产生)

相对内部(relative interior)
r e l i n t   C = { x ∈ C ∣ B ( x , r ) ∩ aff C ⊆ C   f o r   s o m e   r > 0 } relint\ C = \{x\in C|B(x,r)\cap\textbf{aff}C\subseteq C\ for\ some\ r > 0\} relint C={xCB(x,r)affCC for some r>0}
就是这些点的邻域与aff C的交集仍然在C中。
c l   C   r e l i n t   C cl\ C \\ \ relint\ C cl C relint C 为边界

三维空间中的正方形
C = { x ∈ R 3 ∣ ∣ x 1 ∣ ≤ 1 , ∣ x 2 ∣ ≤ 2 , x 3 = 0 } C = \{x\in R^3||x_1|\le1,|x_2|\le2,x_3 = 0\} C={xR3∣∣x11,x22,x3=0}
其仿射包是什么呢?是由平面上的点组成的所有线性组合,那么自然是整个平面。那么dimension应该是2

凸集

x 1 ∈ C , x 2 ∈ C , 0 ≤ θ ≤ 1 , θ x 1 + ( 1 − θ ) x 2 ∈ C x_1\in C,x_2\in C,0\le\theta\le1,\theta x_1+(1-\theta)x_2\in C x1C,x2C,0θ1,θx1+(1θ)x2C
则为凸集
仿射集都是凸集

凸组合:
θ 1 x 1 + θ 2 x 2 + . . . + θ n x n , θ i ≥ 0 \theta_1 x_1+\theta_2x_2+...+\theta_nx_n,\theta_i\ge0 θ1x1+θ2x2+...+θnxn,θi0

凸包:
conv C = { θ 1 x 1 + . . . + θ k x k ∣ x i ∈ C , θ i ≥ 0 , i = 1 , . . . , k , θ 1 + . . . + θ k = 1 } \textbf{conv} C = \{\theta_1x_1+...+\theta_kx_k|x_i\in C,\theta_i\ge 0,i=1,...,k,\theta_1+...+\theta_k = 1\} convC={θ1x1+...+θkxkxiC,θi0,i=1,...,k,θ1+...+θk=1}
设 CC 是一个集合,那么 CC 的凸包 conv©conv© 是包含 CC 中所有点的最小凸集合。换句话说,conv©conv© 是包含 CC 的所有点的最小凸集合,且没有其他凸集合包含 CC 中的所有点。

线性组合、仿射组合与凸组合
对比一下,都是
θ 1 x 1 + . . . + θ k x k \theta_1x_1+...+\theta_kx_k θ1x1+...+θkxk
但是线性组合对 θ i \theta_i θi无要求,仿射要求 Σ θ i = 1 \Sigma\theta_i=1 Σθi=1,凸组合要求 Σ θ i = 1 \Sigma\theta_i=1 Σθi=1,且 θ i ≥ 0 \theta_i\ge 0 θi0
条件越来越强。
![./凸优化问题/凸优化笔记-基本概念/请添加图片描述

锥集

对任意 x ∈ C x\in C xC,都有 θ x ∈ C \theta x\in C θxC
锥的顶点在原点。
凸锥====== 又凸又锥(比如一个立在原点的在最粗的地方切开的洋葱头?)

θ 1 x 1 + . . . + θ k x k , θ i ≥ 0 \theta_1x_1+...+\theta_kx_k,\theta_i\ge 0 θ1x1+...+θkxk,θi0
conic combination
锥组合
锥包
{ θ 1 x 1 + . . . + θ k x k ∣ x i ∈ C , θ i ≥ 0 , i = 1 , . . . , k } \{\theta_1x_1+...+\theta_kx_k|x_i\in C,\theta_i\ge 0,i=1,...,k\} {θ1x1+...+θkxkxiC,θi0,i=1,...,k}
C的锥包是能包含C的最小的锥集

![./凸优化问题/凸优化笔记-基本概念/请添加图片描述

超平面和半空间

超平面
a T x = b a^Tx = b aTx=b
半空间
{ x ∣ a T x ≥ b } \{x|a^Tx\ge b\} {xaTxb}

椭球
ϵ = { x ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \epsilon = \{x|(x-x_c)^TP^{-1}(x-x_c)\le 1\} ϵ={x(xxc)TP1(xxc)1}
P是对称且正定的,对称轴的长度由特征值的根号给出 λ i \sqrt{\lambda_i} λi

多面体
P = { x ∣ A x ≼ b , C x = d } P=\{x|Ax≼ b,Cx = d\} P={xAxb,Cx=d}
A = [ a 1 T . . . a m T ] , C = [ c 1 T . . . c p T ] A = \begin{bmatrix}a_1^T\\.\\.\\.\\a_m^T\end{bmatrix},C = \begin{bmatrix}c_1^T\\.\\.\\.\\c_p^T\end{bmatrix} A= a1T...amT ,C= c1T...cpT

单纯形

n维单纯形有n+1个顶点,如1维线段,2维三角形,三维四面体

单位单纯形 x ⪰ 0 , 1 T x ≤ 1 x\succeq0,\textbf 1^Tx\le1 x0,1Tx1 , n维度
概率单纯形 x ⪰ 0 , 1 T x = 1 x\succeq 0,\textbf 1^Tx=1 x0,1Tx=1, n-1维度

整半定锥

对称矩阵集合 S n = { X ∈ R n × n ∣ X = X T } S^n=\{X\in R^{n\times n}|X=X^T\} Sn={XRn×nX=XT}
其维度为 ( n + 1 ) n / 2 (n+1)n/2 (n+1)n/2,可以想想有多少个独立的元素。

非负
S + n = { X ∈ R n × n ∣ X = X T , X ⪰ 0 } S^n_+=\{X\in R^{n\times n}|X=X^T,X\succeq0\} S+n={XRn×nX=XT,X0}

S + n + = { X ∈ R n × n ∣ X = X T , X ≻ 0 } S^n_++=\{X\in R^{n\times n}|X=X^T,X\succ 0\} S+n+={XRn×nX=XT,X0}
convex set:都是
convex cone: S + n + S^n_++ S+n+不是,因为没有0

保凸性的操作

仿射变换、凸集的交集、求和、笛卡尔内积

设有线性矩阵不等式(LMI)
A ( x ) = x 1 A 1 + . . . + x n A n ⪯ B A(x)=x_1A_1+...+x_nA_n\preceq B A(x)=x1A1+...+xnAnB
其解集是convex的
仿射变换呢?

透视函数

降低维度 P : R n + 1 → R n P:R^{n+1}\to R^n P:Rn+1Rn
可以等效为一个小孔成像摄像机

接受平面位置在 x 3 = − 1 x_3 = -1 x3=1
小孔在原点,被测物 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3
则相点为 − ( x 1 / x 3 , x 2 / x 3 , 1 ) -(x_1/x_3,x_2/x_3,1) (x1/x3,x2/x3,1)
d o m P = R n × R + + dom P = R^n\times R_{++} domP=Rn×R++
P ( z , t ) = z / t P(z,t)=z/t P(z,t)=z/t
如果domP中的C是凸点,他的像
P ( C ) = { P ( x ) ∣ x ∈ C } P(C)=\{P(x)|x\in C\} P(C)={P(x)xC}
也是凸的

凸函数的条件

1阶判定条件

若f可微,当且仅当dom f凸,而且
f ( y ) ≥ f ( x ) + ∇ f ( x ) T ( y − x ) f(y)\ge f(x)+\nabla f(x)^T(y-x) f(y)f(x)+f(x)T(yx)
![./凸优化问题/凸优化笔记-基本概念/请添加图片描述

其几何意义为函数上的点永远比某一条切线上的点高(或重合)
(该形式为泰勒一阶展开)

2阶判定条件

∇ f ⪰ 0 \nabla f \succeq 0 f0

  • R n R^n Rn上的范数都是凸的(由范数的三角不等式得到)
    ∣ ∣ u 1 ∣ ∣ + ∣ ∣ u 2 ∣ ∣ ≥ ∣ ∣ u 1 + u 2 ∣ ∣ ||u_1||+||u_2|| \ge ||u_1+u_2|| ∣∣u1∣∣+∣∣u2∣∣∣∣u1+u2∣∣
  • 最大值函数是凸的
    m a x ( x ) + m a x ( y ) > m a x ( x + y ) max(x) + max(y) >max(x+y) max(x)+max(y)>max(x+y)
  • 二次overlinear函数
    f ( x , y ) = x 2 / y , y > 0        ∇ 2 f = [ 2 / y − 2 x / y 2 − 2 x / y 2 2 x 2 / y 3 ] , d e t ( ∇ 2 f ) = 2 y 3 ∣ y 2 − x y − x y 2 x 2 ∣ = 2 y 2 ∗ ( 2 x 2 y 2 − x 2 y 2 ) > 0 f(x,y) = x^2/y,y>0\ \ \ \ \ \ \nabla^2 f = \begin{bmatrix}2/y & -2x/y^2 \\-2x/y^2 & 2x^2/y^3\end{bmatrix}, det(\nabla^2 f) = \frac{2}{y^3}\begin{vmatrix}y^2&-xy\\-xy&2x^2\end{vmatrix}=\frac{2}{y^2}*(2x^2y^2-x^2y^2)>0 f(x,y)=x2/y,y>0      2f=[2/y2x/y22x/y22x2/y3],det(2f)=y32 y2xyxy2x2 =y22(2x2y2x2y2)>0
  • 对数求和指数
    f ( x ) = log ⁡ ( e x p ( x 1 ) + e x p ( x 2 ) + . . . + e x p ( x n ) ) f(x) = \log(exp(x_1)+exp(x_2)+...+exp(x_n)) f(x)=log(exp(x1)+exp(x2)+...+exp(xn))
    ∂ f ∂ x i = exp ⁡ ( x i ) Σ j = 0 j = n exp ⁡ ( x j ) \frac{\partial f}{\partial x_i} = \frac{\exp(x_i)}{\Sigma_{j =0} ^{j=n} \exp(x_j)} xif=Σj=0j=nexp(xj)exp(xi)
    z = ( e x p ( x 1 ) , e x p ( x 2 ) , . . . , e x p ( x n ) ) ,   Σ j = 0 j = n exp ⁡ ( x j ) = 1 T z z = (exp(x_1),exp(x_2),...,exp(x_n)),\ \Sigma_{j =0} ^{j=n} \exp(x_j)= \textbf{1}^Tz z=(exp(x1),exp(x2),...,exp(xn)), Σj=0j=nexp(xj)=1Tz
    求Hessian矩阵
    ∂ 2 f ∂ x i ∂ x j = − exp ⁡ ( x i ) exp ⁡ ( x j ) ( 1 T z ) 2 , i ≠ j \frac{\partial^2f}{\partial x_i\partial x_j}=-\frac{\exp(x_i)\exp(x_j)}{(\textbf{1}^Tz)^2},i\not = j xixj2f=(1Tz)2exp(xi)exp(xj),i=j
    ∂ 2 f ∂ x i 2 = exp ⁡ ( x i ) 1 T z − exp ⁡ ( x i ) 2 ( 1 T z ) 2 \frac{\partial^2 f}{\partial x_i^2} = \frac{\exp(x_i)}{\textbf{1}^Tz} - \frac{\exp(x_i)^2}{(\textbf{1}^Tz)^2} xi22f=1Tzexp(xi)(1Tz)2exp(xi)2
    i=j时二阶导导前半部分可以组成一个对角阵列,后半部分和不等时的形式相同
    ∇ 2 f = 1 ( 1 T z ) 2 ( ( 1 T z ) d i a g ( z ) − z z T ) \nabla^2f=\frac{1}{(\textbf{1}^Tz)^2 } ((\textbf{1}^Tz )diag(z)-zz^T) 2f=(1Tz)21((1Tz)diag(z)zzT)
    对任意v,有
    v T ∇ 2 f   v = 1 ( 1 T z ) 2 ( Σ j = 0 j = n z j Σ j = 0 j = n v j 2 z j − v T z z T v ) = 1 ( 1 T z ) 2 ( Σ j = 0 j = n z j Σ j = 0 j = n v j 2 z j − ( Σ j = 0 j = n z j v j ) 2 ) v^T\nabla^2f\ v=\frac{1}{(\textbf{1}^Tz)^2 } (\Sigma_{j =0} ^{j=n} z_j \Sigma_{j =0} ^{j=n} v_j^2z_j-v^Tzz^Tv)= \frac{1}{(\textbf{1}^Tz)^2 } (\Sigma_{j =0} ^{j=n} z_j \Sigma_{j =0} ^{j=n} v_j^2z_j-(\Sigma_{j =0} ^{j=n}z_jv_j)^2) vT2f v=(1Tz)21(Σj=0j=nzjΣj=0j=nvj2zjvTzzTv)=(1Tz)21(Σj=0j=nzjΣj=0j=nvj2zj(Σj=0j=nzjvj)2)
    此处使用Cauchy-Schwarz不等式, a i = v i z i , b i = z i , ( a T a ) ( b T b ) ≥ ( a T b ) 2 a_i = v_i\sqrt{z_i},b_i = \sqrt{z_i},(a^Ta) (b^Tb)\ge (a^Tb)^2 ai=vizi ,bi=zi ,(aTa)(bTb)(aTb)2,可得上式不小于0。

Epigraph 外图

函数f的graph定义为
{ ( x , f ( x ) ) ∣ x ∈ dom   f } \{(x,f(x))|x\in \textbf{dom}\ f\} {(x,f(x))xdom f}
R n + 1 \textbf{R}^{n+1} Rn+1的子集
其epigraph为
epi   f = { ( x , t ) ∣ x ∈ dom   f , f ≤ t } \textbf{epi}\ f=\{ (x,t) | x\in \textbf{dom} \ f,f\le t\} epi f={(x,t)xdom f,ft}
(‘Epi’ means ‘above’ so epigraph means ‘above the graph’.)
亚图为
hypo f = { ( x , t ) ∣ x ∈ dom   f , f ≥ t } \textbf{hypo}f = \{ (x,t) | x\in \textbf{dom} \ f,f\ge t \} hypof={(x,t)xdom f,ft}

请添加图片描述

这个图能建立凸集和凸函数的关系。当且仅当外图(epi f)是凸的时候函数是凸的。
当且仅当亚图(hypo f)是凸的时候函数是凹的

  • 矩阵分式函数
    f ( x , Y ) = x T Y − 1 x ,     dom   f = R n × S + + n f(x,Y) = x^TY^{-1}x,\ \ \ \textbf{dom} \ f=\textbf{R}^n\times\textbf{S}^n_{++} f(x,Y)=xTY1x,   dom f=Rn×S++n

epi f = { ( x , Y , t ) ∣ Y ≻ 0 , f ( x , Y ) ≤ t } \textbf{epi} f =\{(x,Y,t)|Y\succ0, f(x,Y)\le t \} epif={(x,Y,t)Y0,f(x,Y)t}
x T Y − 1 x ≤ t x^TY^{-1}x\le t xTY1xt
此处需要用到舒尔补(Schur complement)
M = [ A B C D ] M = \begin{bmatrix}A&B\\C&D\end{bmatrix} M=[ACBD]
如果A可逆,则其舒尔补为 D − C A − 1 B D-CA^{-1}B DCA1B
代入有
M = [ Y x x T t ] ⪰ 0 M = \begin{bmatrix}Y&x\\x^T&t\end{bmatrix}\succeq 0 M=[YxTxt]0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1951255.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」

Python 爬虫入门(一):从零开始学爬虫 「详细介绍」 前言1.爬虫概念1.1 什么是爬虫?1.2 爬虫的工作原理 2. HTTP 简述2.1 什么是 HTTP?2.2 HTTP 请求2.3 HTTP 响应2.4 常见的 HTTP 方法 3. 网页的组成3.1 HTML3.1.1 HTM…

Debug下载与安装(Windows11)

前言 在安装配置前我们先下载一下我们需要用的文件 下载debug 百度网盘下载 下载DOSBox DOSBox 两个文件下载好后我们就开始安装和配置了 第一步:安装DOSBox 第二步:安装好后找到安装路径找到Options.bat文件并打开 第三步:在文件最下…

图片变色,背景方向渐变web

<!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>图片变色</title> <script src"03.JS\3.8JS案例加强\JQuery.js"></script> <style> .image-filter…

nvm 安装和遇到的问题

环境 win 11 安装 下载安装包 访问 https://github.com/coreybutler/nvm-windows/releases 选择需要的版本继续下载安装基本是可以下一步下一步的啦&#x1f92d; 安装 node 我这里需要16.x.x的node&#xff0c;执行以下命令 nvm install 16使用 node nvm use 16问题 …

苹果CMS V10萌芽采集插件Pro v10.7.3

苹果CMS V10萌芽采集插件Pro v10.7.3 插件下载:萌芽采集插件Pro v10.7.3.zip 使用说明: 将addons文件和static文件放到你苹果cms程序的根目录并覆盖&#xff0c; 在登录后台在应用-应用市场启用。http://你的域名/admin.php/admin/mycj/union.html

卷积的意义及其派生(一)

1.卷积的意义 1.1从LTI的角度看 卷积最开始其实是信号处理中用来描述线性移不变系统Linear time-invariant systems的。线性&#xff0c;表明可以叠加&#xff0c;信号可以拆分成脉冲的响应&#xff1b;时不变&#xff0c;指信号不随着时间的迁移改变&#xff0c;意味着能量守…

计算机网络(Wrong Question)

一、计算机网络体系结构 1.1 计算机网络概述 D 注&#xff1a;计算机的三大主要功能是数据通信、资源共享、分布式处理。&#xff08;负载均衡、提高可靠性&#xff09; 注&#xff1a;几段链路就是几段流水。 C 注&#xff1a;记住一个基本计算公式&#xff1a;若n个分组&a…

C语言程序设计(二)

四.找素数 素数&#xff1a;除了1和它本身不再有其他因数的自然数。换句话说&#xff1a;一个大于1的自然数 &#xff0c;如果只能被1和它本身整除&#xff0c;那就是素数&#xff08;质数&#xff09;。 在打印中遇到的问题就是&#xff0c;知道怎么写却总是运行不起来。主要…

苦学Opencv的第十一天:图像的形态学操作

Python OpenCV从入门到精通学习日记&#xff1a;图像的形态学操作 前言 图像形态学是图像处理中的一个重要分支&#xff0c;主要关注图像中物体的形状和结构。通过形态学操作&#xff0c;我们可以对图像进行有效的分析和处理&#xff0c;例如图像的腐蚀与膨胀、开运算与闭运算…

Java 并发编程:一文了解 Java 内存模型(处理器优化、指令重排序与内存屏障的深层解析)

大家好&#xff0c;我是栗筝i&#xff0c;这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 022 篇文章&#xff0c;在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验&#xff0c;并希望进…

VIN解析汽车详情|阿里云实现调用API接口

介绍&#xff1a; 本次解析通过阿里云云市场的云服务来实现通过17位车架号来自动识别车型的详细信息&#xff0c;首先需要准备选择一家可以提供查询的商品。 https://market.aliyun.com/apimarket/detail/cmapi00065864#skuyuncode5986400001 步骤1: 选择商品 如图点击免费…

【微软蓝屏】微软Windows蓝屏问题汇总与应对解决策略

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

关键词查找【Knuth-Morris-Pratt (KMP) 算法】

一个视频让你彻底学懂KMP算法_哔哩哔哩_bilibili KMP算法的核心是利用匹配失败后的信息&#xff0c;尽量减少模式串与主串的匹配次数以达到快速匹配的目的。 第一步&#xff1a;计算模式串(子串)和next[j]数组 模式串 前2位字母的next[j]固定是0 和 1 后续字母的nex[j]&…

项目实战——外挂开发(30小时精通C++和外挂实战)

项目实战——外挂开发&#xff08;30小时精通C和外挂实战&#xff09; 外挂开发1-监控游戏外挂开发2-秒杀僵尸外挂开发3-阳光地址分析外挂开发4-模拟阳光外挂开发5-无限阳光 外挂开发1-监控游戏 外挂的本质 有两种方式 1&#xff0c;修改内存中的数据 2&#xff0c;更改内存中…

跟李沐学AI:池化层

目录 二维最大池化 填充、步幅和多个通道 平均池化层 池化层总结 二维最大池化 返回滑动窗口中的最大值。 图为池化窗口形状为 22 的最大池化层。着色部分是第一个输出元素&#xff0c;以及用于计算这个输出的输入元素: max(0,1,3,4)4。池化层与卷积层类似&#xff0c;不断…

数据库中的事务

一、理解事务 1、本质 事务由一组DML语句组成&#xff0c;这一组语句要么全部成功&#xff0c;要么全部失败。在逻辑上&#xff0c;事务就是一组sql语句&#xff0c;但在实际中&#xff0c;公共的数据库一定会高并发地接受各种事务的请求&#xff0c;所以一个事务要有4个属性…

centos7 xtrabackup mysql(8)增量备份(1)

centos7 xtrabackup mysql&#xff08;8&#xff09;增量备份&#xff08;1&#xff09; 参考 xtrabackup-8.0的安装、备份以及恢复&#xff08;innoxtrabackup有待测试&#xff09; https://blog.csdn.net/DWJRIVER/article/details/117792271 https://blog.csdn.net/qq_28…

力扣高频SQL 50 题(基础版)第四题

文章目录 力扣高频SQL 50 题&#xff08;基础版&#xff09;第四题584.寻找用户推荐人题目说明思路分析实现过程准备数据实现方式结果截图 力扣高频SQL 50 题&#xff08;基础版&#xff09;第四题 584.寻找用户推荐人 题目说明 表: Customer -------------------- | Colu…

Weakly Supervised Contrastive Learning 论文阅读

Abstract 无监督视觉表示学习因对比学习的最新成就而受到计算机视觉领域的广泛关注。现有的大多数对比学习框架采用实例区分作为预设任务&#xff0c;将每个实例视为一个不同的类。然而&#xff0c;这种方法不可避免地会导致类别冲突问题&#xff0c;从而损害所学习表示的质量…