【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【论文篇+改进】A题解题全流程(持续更新)

news2025/4/16 23:35:42

【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【论文篇+改进】A题解题全流程(持续更新)

写在前面:

  1. 我是一个人,没有团队,所以出的比较慢,每年只做一次赛题,泰迪杯,我会认真对待,尽量做到创新、质量有保证,包售后。
  2. 本节主要是论文更新,同步会出论文的创新点编写、改写、论文每个章节修改建议,变相降重指导,(以word批注的方式写在章节旁边)。
  3. A题说难也难,说不难也不难;我也看到过相关的其他人的,(例如数模团队、bi站)但如果只是用传统的方法PDF属性去解题,那没有什么创新,只是为了解题而做题,至于像论文重复率计算还使用tf-idf这种古老的句子相似度算法拿来做论文超长文本,PDF属性+re正则匹配来获取信息,有点…。。。。 赛题都提示你要用AI大模型了。

获取链接

请移步CSDN社区

接下来进度:

一、改进代码:

  • 根据同学硬件条件可能不满足情况,修改代码的大模型部分,改为免费API调用,不用本地部署使用大模型
  • 优化代码,将改换版面分析模型+视觉大模型进行论文信息重新提取,问题一尽量减少大模型的模糊使用,利用准确的版面分析提取出论文信息,(例如目录不用大模型识别,版面分析加入目录的检测标签)
  • 问题三的图片与公式雷同,可能去掉繁琐的clip导出特征,替换深度学习网络提取图片特征即可,因为都是一个原理,clip更偏向于图文检索,图图检索只是可以满足。

二、至于C题

  • 高估了自己空闲情况,白天要上班加班,所以C题就不出论文了,我抓紧在正式比赛前做完代码部分
  • 届时会低价出c题的代码包与结果。并且同步更新正式比赛
  • c题包括数据结果化预处理、langchian-chatchat复现教程、配置环境镜像分享(基于服务器就可以直接运行,找我分享服务器镜像,不用再配置环境了)、问题二三解决代码

论文展示:

论文结构清晰,按照历届泰迪杯特等奖论文结构写作。2w字。并会包含完善论文改进、降重、个性化写作避免重复的批注建议在旁边。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正式比赛时也会同步更新至售后群

A题全家桶获取:

CSDN社区

全家桶包含:

在这里插入图片描述

A题代码+结果单品一获取:

CSDN社区

往届泰迪杯情况:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2335423.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构——哈希详解

数据结构——哈希详解 目录 一、哈希的定义 二、六种哈希函数的构造方法 2.1 除留取余法 2.2 平方取中法 2.3 随机数法 2.4 折叠法 2.5 数字分析法 2.6 直接定值法 三、四种解决哈希冲突的方法 3.1 开放地址法 3.1.1 线性探测法 3.1.2 二次探测法 3.2 链地址法 3…

Spark-SQL核心编程

简介 Hadoop与Spark-SQL的对比 Hadoop在处理结构化数据方面存在局限性,无法有效处理某些类型的数据。 Spark应运而生,特别设计了处理结构化数据的模块,称为Spark SQL(原称Shark)。 SparkSQL的发展历程: Sp…

Docker 与 Podman常用知识汇总

一、常用命令的对比汇总 1、基础说明 Docker:传统的容器引擎,使用 dockerd 守护进程。 Podman:无守护进程、无root容器引擎,兼容 Docker CLI。 Podman 命令几乎完全兼容 Docker 命令,只需将 docker 替换为 podman。…

Large Language Model(LLM)的训练和微调

之前一个偏工程向的论文中了,但是当时对工程理论其实不算很了解,就来了解一下 工程流程 横轴叫智能追寻 竖轴上下文优化 Prompt不行的情况下加shot(提示),如果每次都要加提示,就可以试试知识库增强检索来给提示。 如果希望增强…

统计销量前十的订单

传入参数&#xff1a; 传入begin和end两个时间 返回参数 返回nameList和numberList两个String类型的列表 controller层 GetMapping("/top10")public Result<SalesTop10ReportVO> top10(DateTimeFormat(pattern "yyyy-MM-dd") LocalDate begin,Dat…

AI大模型原理可视化工具:深入浅出理解大语言模型的工作原理

AI大模型原理可视化工具&#xff1a;深入浅出理解大语言模型的工作原理 在人工智能快速发展的今天&#xff0c;大语言模型&#xff08;如GPT、BERT等&#xff09;已经成为改变世界的重要技术。但对于很多人来说&#xff0c;理解这些模型的工作原理仍然是一个挑战。为了帮助更多…

qt designer 创建窗体选择哪种屏幕大小

1. 新建窗体时选择QVGA还是VGA 下面这个图展示了区别 这里我还是选择默认&#xff0c;因为没有特殊需求&#xff0c;只是在PC端使用

Spark-SQL核心编程(一)

一、Spark-SQL 基础概念 1.定义与起源&#xff1a;Spark SQL 是 Spark 用于结构化数据处理的模块&#xff0c;前身是 Shark。Shark 基于 Hive 开发&#xff0c;提升了 SQL-on-Hadoop 的性能&#xff0c;但因对 Hive 依赖过多限制了 Spark 发展&#xff0c;后被 SparkSQL 取代&…

AI与无人驾驶汽车:如何通过机器学习提升自动驾驶系统的安全性?

引言 想象一下&#xff0c;在高速公路上&#xff0c;一辆无人驾驶汽车正平稳行驶。突然&#xff0c;前方的车辆紧急刹车&#xff0c;而旁边车道有一辆摩托车正快速接近。在这千钧一发的瞬间&#xff0c;自动驾驶系统迅速分析路况&#xff0c;判断最安全的避险方案&#xff0c;精…

第5篇:Linux程序访问控制FPGA端LEDR<三>

Q&#xff1a;如何具体设计.c程序代码访问控制FPGA端外设&#xff1f; A&#xff1a;以控制DE1-SoC开发板的LEDR为例的Linux .C程序代码。头文件fcntl.h和sys/mman.h用于使用/dev/mem文件&#xff0c;以及mmap和munmap内核函数&#xff1b;address_map_arm.h指定了DE1-SoC_Com…

城市应急安防系统EasyCVR视频融合平台:如何实现多源视频资源高效汇聚与应急指挥协同

一、方案背景 1&#xff09;项目背景 在当今数字化时代&#xff0c;随着信息技术的飞速发展&#xff0c;视频监控和应急指挥系统在公共安全、城市应急等领域的重要性日益凸显。尤其是在关键场所&#xff0c;高效的视频资源整合与传输能力对于应对突发公共事件、实现快速精准的…

【笔记ing】AI大模型-03深度学习基础理论

神经网络&#xff1a;A neural network is a network or circuit of neurons,or in a modern sense,an artificial neural network,composed of artificial neurons or nodes.神经网络是神经元的网络或回路&#xff0c;或者在现在意义上来说&#xff0c;是一个由人工神经元或节…

07软件测试需求分析案例-修改用户信息

修改用户信息是后台管理菜单的一个功能模块&#xff0c;只有admin才有修改权限。包括查询用户名进行显示用户相关信息&#xff0c;并且修改用户相关信息的功能。 1.1 通读文档 通读需求规格说明书是提取信息&#xff0c;提出问题&#xff0c;输出具有逻辑、规则、流程的业务…

设计模式 --- 状态模式

状态模式​​是一种​​行为型设计模式​​&#xff0c;允许对象在内部状态改变时动态改变其行为​​&#xff0c;使对象的行为看起来像是改变了。该模式通过将状态逻辑拆分为独立类​​&#xff0c;消除复杂的条件分支语句&#xff0c;提升代码的可维护性和扩展性。 状态模式的…

深入剖析Go Channel:从底层原理到高阶避坑指南|Go语言进阶(5)

文章目录 引言channel的底层数据结构channel操作原理发送操作(ch <- data)接收操作(<-ch) 常见陷阱及避坑指南1. 死锁问题2. 关闭channel的错误方式3. 内存泄漏4. nil channel特性5. 性能考量 最佳实践总结 引言 Channel是Go语言实现CSP并发模型的核心机制&#xff0c;提…

OpenCV 图形API(31)图像滤波-----3x3 腐蚀操作函数erode3x3()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用3x3矩形结构元素腐蚀图像。 该函数通过使用中心作为锚点的3x3矩形结构元素来腐蚀源图像。腐蚀操作可以应用多次&#xff08;迭代&#xff0…

AI Agent开发大全第二十八课-MCP实现本地命令调用怎么做的?

开篇 MCP很强大,Client端一旦实现了稳定的连接和执行流程后任Server端随意改动都可兼容,这就是热插拨功能。 如果我们仅仅满足于MCP查点网上资料、读点图片即文字型的功能肯定是不能充分发挥MCP的强大之处的,正应了Google以及Anthropic最近的研究报告上说的:不要再在chat…

A2A协议实现详解及示例

A2A协议概述 A2A (Agent2Agent) 是Google推出的一个开放协议&#xff0c;旨在使AI智能体能够安全地相互通信和协作。该协议打破了孤立智能体系统之间的壁垒&#xff0c;实现了复杂的跨应用自动化。[1] A2A协议的核心目标是让不同的AI代理能够相互通信、安全地交换信息以及在各…

活动图与流程图的区别与联系:深入理解两种建模工具

目录 前言1. 活动图概述1.1 活动图的定义1.2 活动图的基本构成要素1.3 活动图的应用场景 2. 流程图概述2.1 流程图的定义2.2 流程图的基本构成要素2.3 流程图的应用场景 3. 活动图与流程图的联系4. 活动图与流程图的区别4.1 所属体系不同4.2 表达能力差异4.3 使用目的与语境4.4…

图片文本识别OCR+DeepSeekapi实现提取图片关键信息

用到的技术&#xff1a; 通过腾讯OCR文字识别&#xff0c;deepseek的api实现 目录 需求分析&#xff1a; 文字识别&#xff08;OCR&#xff09;具体实现步骤 起步工作 代码编写 deepseek整合消息&#xff0c;返回文本关键信息 起步工作 编写工具类 具体调用实现 具体…