cubeIDE开发, stm32人工智能开发应用实践(Cube.AI).篇三

news2024/12/27 13:49:24

一、cube.AI实际项目应用

        接篇二,前文都是采用FP-AI-SENSING1案例和配套的B-L475E-IOT01A开发板来阐述的,而实际项目中,我们都是基于自身项目硬件平台来训练模型及部署模型的,我们仅仅需要cube.AI软件包(作为可调用库)来支持我们项目,不会强行采用FP-AI-SENSING1案例去收集数据及配套的B-L475E-IOT01A等硬件平台部署。

        回顾篇一,ST公司支持到如下图芯片型号,

         在本文中,将采用STM32L496VGT6-ali开发板来部署cube.AI实现人工智能。STM32L496VGT6开发板已经集成了LSM6DSL传感器(三轴加速度计及三轴陀螺仪传感器),项目设想如下:

        1)通过LSM6DSL采集加速度数值(x/y/z三轴加速度)

        2)本文只采集三种姿态(开发板正面朝上,静止不动、左右移动、上下移动三种姿态)时的加速度数值,用来实现分类神经网络,三种姿态作为神经网络模型输出值(分类)

        3)每次读取三次加速度值(每次读取x/y/z三轴加速度值),共9个数值作为神经网络模型输入数据

        4)利用STM32L496VGT6开发板上的三个按钮,KEY0为静止不动姿态采集按键,KEY1为左右移动姿态采集按键,KEY2为上下移动姿态采集按键。

        5)通过串口打印输出采集数据信息,并通过串联助手连接获得采集日志并保存成TXT文件

        6)将记录数据文件转换为csv文件,通过keras框架,编写神经网络训练模型python项目,进行神经网络模型训练,并输出.h5训练模型文件

        7)通过cubeMX和cube.AI将h5神经网络模型转换为c语言神经网络模型

        8)将LSM6DSL实时采集数据推送给c语言神经网络模型API,进行神经网络计算,查看输出结果是否符合预期。

二、创建工程

        在CubeIDE上,基于STM32L496VGT6芯片,创建新工程STM32工程,并实现了串口lpuart1调试日志输出,三个按键KEY0~2和三个LED灯LED0~2的功能实现,并实现LSM6DSL传感器采集数据功能(I2C4),请参考本专栏博文:

        1)cubeIDE快速开发流程_ide 程序的开发过程_py_free的博客-CSDN博客

        2)cubeIDE开发, stm32调试信息串口通信输出显示_py_free的博客-CSDN博客_怎么实查看stm32串口输出

        3)cubeIDE开发,I2C协议采集传感器数据(SHTC1、LTR-553ALS、BMP280、LSM6DSL、MMC3680KJ)_ltr553 driver download_py_free的博客-CSDN博客

        现给出简要的配置及源码信息:

2.1 工程配置

        1)内核功能配置及RCC开启外部时钟支持

         2)开启LPUART1,并开启其中断支持

         3)开启I2C4,并开启其中断功能及DMA功能

        4)配置GPIO引脚(三个按键及三个LED灯)

         5)配置时钟树

         6)引脚视图

         7)工程配置,选择为每个外设生成独立的.h/.c文件

         生成输出代码

2.2 外设代码设计

        禁用syscalls.c文件(右键进入文件属性设置页面)

        在工程下,创建源目录ICore,在该目录下,如下图所示,创建子目录及外设驱动源文件

         源码文件内容如下:

        1)key.h

#ifndef KEY_H_
#define KEY_H_

#include "main.h"
#include "gpio.h"

GPIO_PinState get_key0_val();
GPIO_PinState get_key1_val();
GPIO_PinState get_key2_val();

uint8_t KEY_0(void);
uint8_t KEY_1(void);
uint8_t KEY_2(void);

#endif /* KEY_H_ */

         key.c

#include "key.h"

GPIO_PinState get_key0_val()
{
	return HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin);
};

GPIO_PinState get_key1_val()
{
	return HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin);
};

GPIO_PinState get_key2_val()
{
	return HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin);
};

uint8_t KEY_0(void)
{
	uint8_t a;
	a=0;//如果未进入按键处理,则返回0
	if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){//读按键接口的电平
		HAL_Delay(20);//延时去抖动
		if(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
			a=1;//进入按键处理,返回1
		}
	}
	while(HAL_GPIO_ReadPin(KEY0_GPIO_Port,KEY0_Pin)==GPIO_PIN_RESET); //等待按键松开
	return a;
}

uint8_t KEY_1(void)
{
	uint8_t a;
	a=0;//如果未进入按键处理,则返回0
	if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){//读按键接口的电平
		HAL_Delay(20);//延时去抖动
		if(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
			a=1;//进入按键处理,返回1
		}
	}
	while(HAL_GPIO_ReadPin(KEY1_GPIO_Port,KEY1_Pin)==GPIO_PIN_RESET); //等待按键松开
	return a;
}

uint8_t KEY_2(void)
{
	uint8_t a;
	a=0;//如果未进入按键处理,则返回0
	if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){//读按键接口的电平
		HAL_Delay(20);//延时去抖动
		if(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET){ //读按键接口的电平
			a=1;//进入按键处理,返回1
		}
	}
	while(HAL_GPIO_ReadPin(KEY2_GPIO_Port,KEY2_Pin)==GPIO_PIN_RESET); //等待按键松开
	return a;
}

         2) led.h

#ifndef LED_H_
#define LED_H_
#include "main.h"
#include "gpio.h"

void Toggle_led0();
void Toggle_led1();
void Toggle_led2();

void set_led0_val(GPIO_PinState PinState);
void set_led1_val(GPIO_PinState PinState);
void set_led2_val(GPIO_PinState PinState);

#endif /* LED_H_ */

         led.c

#include "led.h"

void Toggle_led0()
{
	HAL_GPIO_TogglePin(LED0_GPIO_Port,LED0_Pin);
}

void Toggle_led1()
{
	HAL_GPIO_TogglePin(LED1_GPIO_Port,LED1_Pin);
}

void Toggle_led2()
{
	HAL_GPIO_TogglePin(LED2_GPIO_Port,LED2_Pin);
}

void set_led0_val(GPIO_PinState PinState)
{
	HAL_GPIO_WritePin(LED0_GPIO_Port,LED0_Pin,PinState);
};

void set_led1_val(GPIO_PinState PinState)
{
	HAL_GPIO_WritePin(LED1_GPIO_Port,LED1_Pin,PinState);
};

void set_led2_val(GPIO_PinState PinState)
{
	HAL_GPIO_WritePin(LED2_GPIO_Port,LED2_Pin,PinState);
};

         3)print.h

#ifndef INC_RETARGET_H_
#define INC_RETARGET_H_

#include "stm32l4xx_hal.h"
#include "stdio.h"//用于printf函数串口重映射
#include <sys/stat.h>

void ResetPrintInit(UART_HandleTypeDef  *huart);

int _isatty(int fd);
int _write(int fd, char* ptr, int len);
int _close(int fd);
int _lseek(int fd, int ptr, int dir);
int _read(int fd, char* ptr, int len);
int _fstat(int fd, struct stat* st);

#endif /* INC_RETARGET_H_ */

         print.c

#include <_ansi.h>
#include <_syslist.h>
#include <errno.h>
#include <sys/time.h>
#include <sys/times.h>
#include <limits.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>

#include "print.h"

#if !defined(OS_USE_SEMIHOSTING)
#define STDIN_FILENO  0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

UART_HandleTypeDef *gHuart;

void ResetPrintInit(UART_HandleTypeDef *huart)  {
  gHuart = huart;
  /* Disable I/O buffering for STDOUT  stream, so that
   * chars are sent out as soon as they are  printed. */
  setvbuf(stdout, NULL, _IONBF, 0);
}
int _isatty(int fd) {
  if (fd >= STDIN_FILENO && fd <=  STDERR_FILENO)
    return 1;
  errno = EBADF;
  return 0;
}
int _write(int fd, char* ptr, int len) {
  HAL_StatusTypeDef hstatus;
  if (fd == STDOUT_FILENO || fd ==  STDERR_FILENO) {
    hstatus = HAL_UART_Transmit(gHuart,  (uint8_t *) ptr, len, HAL_MAX_DELAY);
    if (hstatus == HAL_OK)
      return len;
    else
      return EIO;
  }
  errno = EBADF;
  return -1;
}
int _close(int fd) {
  if (fd >= STDIN_FILENO && fd <=  STDERR_FILENO)
    return 0;
  errno = EBADF;
  return -1;
}
int _lseek(int fd, int ptr, int dir) {
  (void) fd;
  (void) ptr;
  (void) dir;
  errno = EBADF;
  return -1;
}
int _read(int fd, char* ptr, int len) {
  HAL_StatusTypeDef hstatus;
  if (fd == STDIN_FILENO) {
    hstatus = HAL_UART_Receive(gHuart,  (uint8_t *) ptr, 1, HAL_MAX_DELAY);
    if (hstatus == HAL_OK)
      return 1;
    else
      return EIO;
  }
  errno = EBADF;
  return -1;
}
int _fstat(int fd, struct stat* st) {
  if (fd >= STDIN_FILENO && fd <=  STDERR_FILENO) {
    st->st_mode = S_IFCHR;
    return 0;
  }
  errno = EBADF;
  return 0;
}

#endif //#if !defined(OS_USE_SEMIHOSTING)

        4) usart.h

#ifndef INC_USART_H_
#define INC_USART_H_

#include "stm32l4xx_hal.h" //HAL库文件声明
#include <string.h>//用于字符串处理的库
#include "../print/print.h"//用于printf函数串口重映射

extern UART_HandleTypeDef hlpuart1;//声明LPUSART的HAL库结构体

#define HLPUSART_REC_LEN  256//定义LPUSART最大接收字节数

extern uint8_t  HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
extern uint16_t HLPUSART_RX_STA;//接收状态标记
extern uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存


void  HAL_UART_RxCpltCallback(UART_HandleTypeDef  *huart);//串口中断回调函数声明

#endif /* INC_USART_H_ */

        usart.c

#include "usart.h"

uint8_t  HLPUSART_RX_BUF[HLPUSART_REC_LEN];//接收缓冲,最大HLPUSART_REC_LEN个字节.末字节为换行符
/*
 * bit15:接收到回车(0x0d)时设置HLPUSART_RX_STA|=0x8000;
 * bit14:接收溢出标志,数据超出缓存长度时,设置HLPUSART_RX_STA|=0x4000;
 * bit13:预留
 * bit12:预留
 * bit11~0:接收到的有效字节数目(0~4095)
 */
uint16_t HLPUSART_RX_STA=0;接收状态标记//bit15:接收完成标志,bit14:接收到回车(0x0d),bit13~0:接收到的有效字节数目
uint8_t HLPUSART_NewData;//当前串口中断接收的1个字节数据的缓存

void  HAL_UART_RxCpltCallback(UART_HandleTypeDef  *huart)//串口中断回调函数
{
	if(huart ==&hlpuart1)//判断中断来源(串口1:USB转串口)
    {
		if(HLPUSART_NewData==0x0d){//回车标记
     	  HLPUSART_RX_STA|=0x8000;//标记接到回车
		}else{
			if((HLPUSART_RX_STA&0X0FFF)<HLPUSART_REC_LEN){
				HLPUSART_RX_BUF[HLPUSART_RX_STA&0X0FFF]=HLPUSART_NewData; //将收到的数据放入数组
				HLPUSART_RX_STA++;  //数据长度计数加1
			}else{
				HLPUSART_RX_STA|=0x4000;//数据超出缓存长度,标记溢出
			}
        }
       HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData,1); //再开启接收中断
    }
}

        5) LSM6DSL.h

#ifndef _LSM6DSL_H_
#define _LSM6DSL_H_

#include "main.h"

void LSM6DSL_init();
//
uint8_t LSM6DSL_acc_st_open(void);
uint8_t LSM6DSL_acc_st_close(void);

uint8_t LSM6DSL_gyro_st_open(void);
uint8_t LSM6DSL_gyro_st_close(void);

uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);
uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data);

#endif /* LSM6DSL_LSM6DSL_H_ */

        LSM6DSL.c,实现传感器的ID检验、软重置、模式设置、数据读取及转换功能。

#include <stdio.h>
#include "LSM6DSL.h"

extern I2C_HandleTypeDef hi2c4;

#define LSM6DSL_I2C_ADDR1 (0x6A)
#define LSM6DSL_I2C_ADDR2 (0x6B)
#define LSM6DSL_I2C_ADDR_TRANS(n) ((n) << 1)
#define LSM6DSL_I2C_ADDR LSM6DSL_I2C_ADDR_TRANS(LSM6DSL_I2C_ADDR2)

#define LSM6DSL_ACC_GYRO_FUNC_CFG_ACCESS 0x01
#define LSM6DSL_ACC_GYRO_SENSOR_SYNC_TIME 0x04
#define LSM6DSL_ACC_GYRO_SENSOR_RES_RATIO 0x05
#define LSM6DSL_ACC_GYRO_FIFO_CTRL1 0x06
#define LSM6DSL_ACC_GYRO_FIFO_CTRL2 0x07
#define LSM6DSL_ACC_GYRO_FIFO_CTRL3 0x08
#define LSM6DSL_ACC_GYRO_FIFO_CTRL4 0x09
#define LSM6DSL_ACC_GYRO_FIFO_CTRL5 0x0A
#define LSM6DSL_ACC_GYRO_DRDY_PULSE_CFG_G 0x0B
#define LSM6DSL_ACC_GYRO_INT1_CTRL 0x0D
#define LSM6DSL_ACC_GYRO_INT2_CTRL 0x0E
#define LSM6DSL_ACC_GYRO_WHO_AM_I_REG 0x0F
#define LSM6DSL_ACC_GYRO_CTRL1_XL 0x10
#define LSM6DSL_ACC_GYRO_CTRL2_G 0x11
#define LSM6DSL_ACC_GYRO_CTRL3_C 0x12
#define LSM6DSL_ACC_GYRO_CTRL4_C 0x13
#define LSM6DSL_ACC_GYRO_CTRL5_C 0x14
#define LSM6DSL_ACC_GYRO_CTRL6_C 0x15
#define LSM6DSL_ACC_GYRO_CTRL7_G 0x16
#define LSM6DSL_ACC_GYRO_CTRL8_XL 0x17
#define LSM6DSL_ACC_GYRO_CTRL9_XL 0x18
#define LSM6DSL_ACC_GYRO_CTRL10_C 0x19


#define LSM6DSL_ACC_GYRO_MASTER_CONFIG 0x1A
#define LSM6DSL_ACC_GYRO_WAKE_UP_SRC 0x1B
#define LSM6DSL_ACC_GYRO_TAP_SRC 0x1C
#define LSM6DSL_ACC_GYRO_D6D_SRC 0x1D
#define LSM6DSL_ACC_GYRO_STATUS_REG 0x1E

#define LSM6DSL_ACC_GYRO_OUT_TEMP_L 0x20
#define LSM6DSL_ACC_GYRO_OUT_TEMP_H 0x21
#define LSM6DSL_ACC_GYRO_OUTX_L_G 0x22
#define LSM6DSL_ACC_GYRO_OUTX_H_G 0x23
#define LSM6DSL_ACC_GYRO_OUTY_L_G 0x24
#define LSM6DSL_ACC_GYRO_OUTY_H_G 0x25
#define LSM6DSL_ACC_GYRO_OUTZ_L_G 0x26
#define LSM6DSL_ACC_GYRO_OUTZ_H_G 0x27
#define LSM6DSL_ACC_GYRO_OUTX_L_XL 0x28
#define LSM6DSL_ACC_GYRO_OUTX_H_XL 0x29
#define LSM6DSL_ACC_GYRO_OUTY_L_XL 0x2A
#define LSM6DSL_ACC_GYRO_OUTY_H_XL 0x2B
#define LSM6DSL_ACC_GYRO_OUTZ_L_XL 0x2C
#define LSM6DSL_ACC_GYRO_OUTZ_H_XL 0x2D
#define LSM6DSL_ACC_GYRO_SENSORHUB1_REG 0x2E
#define LSM6DSL_ACC_GYRO_SENSORHUB2_REG 0x2F
#define LSM6DSL_ACC_GYRO_SENSORHUB3_REG 0x30
#define LSM6DSL_ACC_GYRO_SENSORHUB4_REG 0x31
#define LSM6DSL_ACC_GYRO_SENSORHUB5_REG 0x32
#define LSM6DSL_ACC_GYRO_SENSORHUB6_REG 0x33
#define LSM6DSL_ACC_GYRO_SENSORHUB7_REG 0x34
#define LSM6DSL_ACC_GYRO_SENSORHUB8_REG 0x35
#define LSM6DSL_ACC_GYRO_SENSORHUB9_REG 0x36
#define LSM6DSL_ACC_GYRO_SENSORHUB10_REG 0x37
#define LSM6DSL_ACC_GYRO_SENSORHUB11_REG 0x38
#define LSM6DSL_ACC_GYRO_SENSORHUB12_REG 0x39
#define LSM6DSL_ACC_GYRO_FIFO_STATUS1 0x3A
#define LSM6DSL_ACC_GYRO_FIFO_STATUS2 0x3B
#define LSM6DSL_ACC_GYRO_FIFO_STATUS3 0x3C
#define LSM6DSL_ACC_GYRO_FIFO_STATUS4 0x3D
#define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_L 0x3E
#define LSM6DSL_ACC_GYRO_FIFO_DATA_OUT_H 0x3F
#define LSM6DSL_ACC_GYRO_TIMESTAMP0_REG 0x40
#define LSM6DSL_ACC_GYRO_TIMESTAMP1_REG 0x41
#define LSM6DSL_ACC_GYRO_TIMESTAMP2_REG 0x42

#define LSM6DSL_ACC_GYRO_TIMESTAMP_L 0x49
#define LSM6DSL_ACC_GYRO_TIMESTAMP_H 0x4A

#define LSM6DSL_ACC_GYRO_STEP_COUNTER_L 0x4B
#define LSM6DSL_ACC_GYRO_STEP_COUNTER_H 0x4C

#define LSM6DSL_ACC_GYRO_SENSORHUB13_REG 0x4D
#define LSM6DSL_ACC_GYRO_SENSORHUB14_REG 0x4E
#define LSM6DSL_ACC_GYRO_SENSORHUB15_REG 0x4F
#define LSM6DSL_ACC_GYRO_SENSORHUB16_REG 0x50
#define LSM6DSL_ACC_GYRO_SENSORHUB17_REG 0x51
#define LSM6DSL_ACC_GYRO_SENSORHUB18_REG 0x52

#define LSM6DSL_ACC_GYRO_FUNC_SRC 0x53
#define LSM6DSL_ACC_GYRO_TAP_CFG1 0x58
#define LSM6DSL_ACC_GYRO_TAP_THS_6D 0x59
#define LSM6DSL_ACC_GYRO_INT_DUR2 0x5A
#define LSM6DSL_ACC_GYRO_WAKE_UP_THS 0x5B
#define LSM6DSL_ACC_GYRO_WAKE_UP_DUR 0x5C
#define LSM6DSL_ACC_GYRO_FREE_FALL 0x5D
#define LSM6DSL_ACC_GYRO_MD1_CFG 0x5E
#define LSM6DSL_ACC_GYRO_MD2_CFG 0x5F

#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_L 0x66
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_X_H 0x67
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_L 0x68
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Y_H 0x69
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_L 0x6A
#define LSM6DSL_ACC_GYRO_OUT_MAG_RAW_Z_H 0x6B

#define LSM6DSL_ACC_GYRO_X_OFS_USR 0x73
#define LSM6DSL_ACC_GYRO_Y_OFS_USR 0x74
#define LSM6DSL_ACC_GYRO_Z_OFS_USR 0x75

#define LSM6DSL_CHIP_ID_VALUE (0x6A)

#define LSM6DSL_RESET_VALUE (0x1)
#define LSM6DSL_RESET_MSK (0X1)
#define LSM6DSL_RESET_POS (0)

#define LSM6DSL_ACC_ODR_POWER_DOWN (0X00)
#define LSM6DSL_ACC_ODR_1_6_HZ (0X0B)
#define LSM6DSL_ACC_ODR_12_5_HZ (0x01)
#define LSM6DSL_ACC_ODR_26_HZ (0x02)
#define LSM6DSL_ACC_ODR_52_HZ (0x03)
#define LSM6DSL_ACC_ODR_104_HZ (0x04)
#define LSM6DSL_ACC_ODR_208_HZ (0x05)
#define LSM6DSL_ACC_ODR_416_HZ (0x06)
#define LSM6DSL_ACC_ODR_833_HZ (0x07)
#define LSM6DSL_ACC_ODR_1_66_KHZ (0x08)
#define LSM6DSL_ACC_ODR_3_33_KHZ (0x09)
#define LSM6DSL_ACC_ODR_6_66_KHZ (0x0A)
#define LSM6DSL_ACC_ODR_MSK (0XF0)
#define LSM6DSL_ACC_ODR_POS (4)

#define LSM6DSL_GYRO_ODR_POWER_DOWN (0X00)
#define LSM6DSL_GYRO_ODR_12_5_HZ (0x01)
#define LSM6DSL_GYRO_ODR_26_HZ (0x02)
#define LSM6DSL_GYRO_ODR_52_HZ (0x03)
#define LSM6DSL_GYRO_ODR_104_HZ (0x04)
#define LSM6DSL_GYRO_ODR_208_HZ (0x05)
#define LSM6DSL_GYRO_ODR_416_HZ (0x06)
#define LSM6DSL_GYRO_ODR_833_HZ (0x07)
#define LSM6DSL_GYRO_ODR_1_66_KHZ (0x08)
#define LSM6DSL_GYRO_ODR_3_33_KHZ (0x09)
#define LSM6DSL_GYRO_ODR_6_66_KHZ (0x0A)
#define LSM6DSL_GYRO_ODR_MSK (0XF0)
#define LSM6DSL_GYRO_ODR_POS (4)

#define LSM6DSL_ACC_RANGE_2G (0x0)
#define LSM6DSL_ACC_RANGE_4G (0x2)
#define LSM6DSL_ACC_RANGE_8G (0x3)
#define LSM6DSL_ACC_RANGE_16G (0x1)
#define LSM6DSL_ACC_RANGE_MSK (0X0C)
#define LSM6DSL_ACC_RANGE_POS (2)

#define LSM6DSL_ACC_SENSITIVITY_2G (61)
#define LSM6DSL_ACC_SENSITIVITY_4G (122)
#define LSM6DSL_ACC_SENSITIVITY_8G (244)
#define LSM6DSL_ACC_SENSITIVITY_16G (488)

#define LSM6DSL_GYRO_RANGE_245 (0x0)
#define LSM6DSL_GYRO_RANGE_500 (0x1)
#define LSM6DSL_GYRO_RANGE_1000 (0x2)
#define LSM6DSL_GYRO_RANGE_2000 (0x3)
#define LSM6DSL_GYRO_RANGE_MSK (0X0C)
#define LSM6DSL_GYRO_RANGE_POS (2)

#define LSM6DSL_GYRO_SENSITIVITY_245DPS (8750)
#define LSM6DSL_GYRO_SENSITIVITY_500DPS (17500)
#define LSM6DSL_GYRO_SENSITIVITY_1000DPS (35000)
#define LSM6DSL_GYRO_SENSITIVITY_2000DPS (70000)

#define LSM6DSL_SHIFT_EIGHT_BITS (8)
#define LSM6DSL_16_BIT_SHIFT (0xFF)
#define LSM6DSL_ACC_MUL (1000)
#define LSM6DSL_GYRO_MUL (1)

#define LSM6DSL_ACC_DEFAULT_ODR_100HZ (100)
#define LSM6DSL_GYRO_DEFAULT_ODR_100HZ (100)

#define LSM6DSL_GET_BITSLICE(regvar, bitname) \
    ((regvar & bitname##_MSK) >> bitname##_POS)

#define LSM6DSL_SET_BITSLICE(regvar, bitname, val) \
    ((regvar & ~bitname##_MSK) | ((val << bitname##_POS) & bitname##_MSK))

typedef enum {
    ACC_RANGE_2G,
    ACC_RANGE_4G,
    ACC_RANGE_8G,
    ACC_RANGE_16G,
    ACC_RANGE_6G,
    ACC_RANGE_12G,
    ACC_RANGE_24G,
    ACC_RANGE_100G,
    ACC_RANGE_200G,
    ACC_RANGE_400G,
    ACC_RANGE_MAX
} acc_range_e;

typedef enum {
    GYRO_RANGE_125DPS,
    GYRO_RANGE_250DPS,
    GYRO_RANGE_500DPS,
    GYRO_RANGE_1000DPS,
    GYRO_RANGE_2000DPS,
    GYRO_RANGE_MAX
} gyro_range_e;

static int32_t lsm6dsl_acc_factor[ACC_RANGE_MAX] = {
    LSM6DSL_ACC_SENSITIVITY_2G, LSM6DSL_ACC_SENSITIVITY_4G,
    LSM6DSL_ACC_SENSITIVITY_8G, LSM6DSL_ACC_SENSITIVITY_16G
};
static int32_t lsm6dsl_gyro_factor[GYRO_RANGE_MAX] = {
    0, LSM6DSL_GYRO_SENSITIVITY_245DPS, LSM6DSL_GYRO_SENSITIVITY_500DPS,
    LSM6DSL_GYRO_SENSITIVITY_1000DPS, LSM6DSL_GYRO_SENSITIVITY_2000DPS
};

typedef enum {
    DEV_POWER_OFF = 0,
    DEV_POWER_ON,
    DEV_SLEEP,
    DEV_SUSPEND,
    DEV_DEEP_SUSPEND,
} LSM6DSL_power_mode;

static int32_t cur_acc_factor  = 0;
static int32_t cur_gyro_factor = 0;

uint8_t LSM6DSL_ID_check()
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	uint8_t addr_val[3] = {LSM6DSL_ACC_GYRO_WHO_AM_I_REG,0x00,LSM6DSL_CHIP_ID_VALUE};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL ID error\r\n");
		return 1;
	}
	if(addr_val[1]!=addr_val[2]){
		printf("LSM6DSL validate_id is error\r\n");
		return 1;
	}
	printf("LSM6DSL_id:%02X\r\n",addr_val[1]);
	return 0;
}

uint8_t LSM6DSL_soft_reset()
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL3_C,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
		return 1;
	}
	printf("LSM6DSL ACC_GYRO_CTRL3_C old:%02X\r\n",addr_val[1]);
	addr_val[1] |= LSM6DSL_RESET_VALUE;
	printf("LSM6DSL ACC_GYRO_CTRL3_C new:%02X\r\n",addr_val[1]);
	hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL ACC_GYRO_CTRL3_C error\r\n");
		return 1;
	}
	printf("successfully LSM6DSL soft reset\r\n");
	return 0;
}
/*
 * 以正数为例,最大可到32767,如果是Accelerometer数据,量程为2g的情况下,
 * 32768个刻度,一个刻度代表:2g/32768 = 2000mg/32767 = 0.061035mg
 * 例如:如果读出数据为16384,则加速度:16384x0.061035mg = 1000mg = 1g
 */
uint8_t LSM6DSL_acc_set_range(uint32_t range)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL acc range error\r\n");
		return 1;
	}
	uint8_t tmp   = 0;
    switch (range) {
    	case ACC_RANGE_2G: {
            tmp = LSM6DSL_ACC_RANGE_2G;
        } break;

        case ACC_RANGE_4G: {
            tmp = LSM6DSL_ACC_RANGE_4G;
        } break;

        case ACC_RANGE_8G: {
            tmp = LSM6DSL_ACC_RANGE_8G;
        } break;

        case ACC_RANGE_16G: {
            tmp = LSM6DSL_ACC_RANGE_16G;
        } break;

        default:
            break;
    }
    addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_RANGE, tmp);
    hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL acc range error\r\n");
		return 1;
	}
	if (range <= ACC_RANGE_16G) {
        cur_acc_factor = lsm6dsl_acc_factor[range];
    }
	printf("successfully LSM6DSL set acc range\r\n");
	return 0;
}

static uint8_t acc_st_lsm6dsl_hz2odr(uint32_t hz)
{
    if (hz > 3330)
        return LSM6DSL_ACC_ODR_6_66_KHZ;
    else if (hz > 1660)
        return LSM6DSL_ACC_ODR_3_33_KHZ;
    else if (hz > 833)
        return LSM6DSL_ACC_ODR_1_66_KHZ;
    else if (hz > 416)
        return LSM6DSL_ACC_ODR_833_HZ;
    else if (hz > 208)
        return LSM6DSL_ACC_ODR_416_HZ;
    else if (hz > 104)
        return LSM6DSL_ACC_ODR_208_HZ;
    else if (hz > 52)
        return LSM6DSL_ACC_ODR_104_HZ;
    else if (hz > 26)
        return LSM6DSL_ACC_ODR_52_HZ;
    else if (hz > 13)
        return LSM6DSL_ACC_ODR_26_HZ;
    else if (hz >= 2)
        return LSM6DSL_ACC_ODR_12_5_HZ;
    else
        return LSM6DSL_ACC_ODR_1_6_HZ;
}

uint8_t LSM6DSL_acc_set_odr(uint32_t hz)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL acc odr error\r\n");
		return 1;
	}
	uint8_t odr   = acc_st_lsm6dsl_hz2odr(hz);
	addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR, odr);
	hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL acc odr error\r\n");
		return 1;
	}
	printf("successfully LSM6DSL set acc odr\r\n");
	return 0;
}

uint8_t LSM6DSL_acc_power_mode(LSM6DSL_power_mode mode)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL1_XL,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL acc power_mode error\r\n");
		return 1;
	}
	switch (mode) {
		case DEV_POWER_ON: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
		}
		break;
		case DEV_POWER_OFF: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_POWER_DOWN);
		}
		break;
		case DEV_SLEEP: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_ACC_ODR,LSM6DSL_ACC_ODR_12_5_HZ);
		}
		break;
		default:
			break;
	}
	hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL acc power_mode error\r\n");
		return 1;
	}
	printf("successfully LSM6DSL acc power_mode\r\n");
	return 0;
}

uint8_t LSM6DSL_acc_st_open(void)
{
	uint8_t ret = 0;

    ret = LSM6DSL_acc_power_mode( DEV_POWER_ON);
    if (ret>0) {
        return ret;
    }

    ret = LSM6DSL_acc_set_range(ACC_RANGE_8G);
    if (ret>0) {
        return ret;
    }

    ret = LSM6DSL_acc_set_odr(LSM6DSL_ACC_DEFAULT_ODR_100HZ);
    if (ret>0) {
        return ret;
    }
    printf("successfully LSM6DSL acc open\r\n");
    return 0;
}

uint8_t LSM6DSL_acc_st_close(void)
{
	uint8_t ret = 0;
    ret = LSM6DSL_acc_power_mode(DEV_POWER_OFF);
    if (ret>0) {
        return ret;
    }
    printf("successfully LSM6DSL acc close\r\n");
    return 0;
}

//LSM6DSL的满刻度加速度范围为±2/±4/±8/±16 g,角速度范围为±125/±250/±500/±1000/±2000 dps。
uint8_t LSM6DSL_gyro_set_range(uint32_t range)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL gyro range error\r\n");
		return 1;
	}
	uint8_t tmp   = 0;
	switch (range) {
    	case GYRO_RANGE_250DPS: {
            tmp = LSM6DSL_GYRO_RANGE_245;
        } break;

        case GYRO_RANGE_500DPS: {
            tmp = LSM6DSL_GYRO_RANGE_500;
        } break;

        case GYRO_RANGE_1000DPS: {
            tmp = LSM6DSL_GYRO_RANGE_1000;
        } break;

        case GYRO_RANGE_2000DPS: {
            tmp = LSM6DSL_GYRO_RANGE_2000;
        } break;

        default:
            break;
	}
	addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_RANGE, tmp);
    hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL gyro range error\r\n");
		return 1;
	}
	if ((range >= GYRO_RANGE_250DPS) && (range <= GYRO_RANGE_2000DPS)) {
        cur_gyro_factor = lsm6dsl_gyro_factor[range];
    }
	printf("successfully LSM6DSL set gyro range\r\n");
	return 0;
}

static uint8_t gyro_st_lsm6dsl_hz2odr(uint32_t hz)
{
    if (hz > 3330)
        return LSM6DSL_GYRO_ODR_6_66_KHZ;
    else if (hz > 1660)
        return LSM6DSL_GYRO_ODR_3_33_KHZ;
    else if (hz > 833)
        return LSM6DSL_GYRO_ODR_1_66_KHZ;
    else if (hz > 416)
        return LSM6DSL_GYRO_ODR_833_HZ;
    else if (hz > 208)
        return LSM6DSL_GYRO_ODR_416_HZ;
    else if (hz > 104)
        return LSM6DSL_GYRO_ODR_208_HZ;
    else if (hz > 52)
        return LSM6DSL_GYRO_ODR_104_HZ;
    else if (hz > 26)
        return LSM6DSL_GYRO_ODR_52_HZ;
    else if (hz > 13)
        return LSM6DSL_GYRO_ODR_26_HZ;
    else
        return LSM6DSL_GYRO_ODR_12_5_HZ;
}

uint8_t LSM6DSL_gyro_set_odr(uint32_t hz)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL gyro odr error\r\n");
		return 1;
	}
	uint8_t odr = gyro_st_lsm6dsl_hz2odr(hz);
	addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR, odr);
	hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL gyro odr error\r\n");
		return 1;
	}
	printf("successfully LSM6DSL set gyro odr\r\n");
	return 0;
}

uint8_t LSM6DSL_gyro_power_mode(LSM6DSL_power_mode mode)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*first read*/
	uint8_t addr_val[2] = {LSM6DSL_ACC_GYRO_CTRL2_G,0x00};
	hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("get LSM6DSL gyro power_mode error\r\n");
		return 1;
	}
	switch (mode) {
		case DEV_POWER_ON: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
			break;
		}
		case DEV_POWER_OFF: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_POWER_DOWN);
			break;
		}
		case DEV_SLEEP: {
			addr_val[1] = LSM6DSL_SET_BITSLICE(addr_val[1], LSM6DSL_GYRO_ODR,LSM6DSL_GYRO_ODR_12_5_HZ);
			break;
		}
		default:
			break;
	}
	hi2c2_status = HAL_I2C_Mem_Write(&hi2c4,LSM6DSL_I2C_ADDR,addr_val[0],1,&addr_val[1],1,1000);
	if(HAL_OK!=hi2c2_status){
		printf("set LSM6DSL gyro power_mode error\r\n");
		return 1;
	}
	printf("successfully LSM6DSL gyro power_mode\r\n");
	return 0;
}

uint8_t LSM6DSL_gyro_st_open(void)
{
	uint8_t ret = 0;
    ret	= LSM6DSL_gyro_power_mode(DEV_POWER_ON);
    if (ret>0) {
        return 1;
    }

    ret = LSM6DSL_gyro_set_range(GYRO_RANGE_1000DPS);
    if (ret>0) {
        return 1;
    }

    ret = LSM6DSL_gyro_set_odr(LSM6DSL_GYRO_DEFAULT_ODR_100HZ);
    if (ret>0) {
        return 1;
    }
    printf("successfully LSM6DSL gyro open\r\n");
    return 0;
}

uint8_t LSM6DSL_gyro_st_close(void)
{
	uint8_t ret = 0;
    ret	= LSM6DSL_gyro_power_mode(DEV_POWER_OFF);
    if (ret>0) {
        return 1;
    }
    printf("successfully LSM6DSL gyro close\r\n");
    return 0;
}

void LSM6DSL_init()
{
	if(LSM6DSL_ID_check()>0)
		return;
	if(LSM6DSL_soft_reset()>0)
		return;
	if(LSM6DSL_acc_power_mode(DEV_POWER_OFF)>0)
		return;
	if(LSM6DSL_gyro_power_mode(DEV_POWER_OFF)>0)
			return;
	printf("successfully LSM6DSL init\r\n");
}

#define DATA_AXIS_X 0
#define DATA_AXIS_Y 1
#define DATA_AXIS_Z 2

uint8_t LSM6DSL_acc_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*read 0X28,0X29,0X2A,0X2B,0X2C,0X2D*/
	uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_XL,LSM6DSL_ACC_GYRO_OUTX_H_XL,
			LSM6DSL_ACC_GYRO_OUTY_L_XL,LSM6DSL_ACC_GYRO_OUTY_H_XL,
			LSM6DSL_ACC_GYRO_OUTZ_L_XL,LSM6DSL_ACC_GYRO_OUTZ_H_XL};
	uint8_t val[6] = {0};
	for(uint8_t i=0; i<6; i++){
		hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
		if(HAL_OK!=hi2c2_status){
			printf("get LSM6DSL acc_read[0X%02X] error\r\n",addr[i]);
			return 1;
		}
	}
//	printf("read acc reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
//		    		,val[0],val[1],val[2],val[3],val[4],val[5]);
	int32_t data[3] = {0};
	data[DATA_AXIS_X] = (int16_t)((((int16_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
	data[DATA_AXIS_Y] = (int16_t)((((int16_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
	data[DATA_AXIS_Z] = (int16_t)((((int16_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));
    if (cur_acc_factor != 0)
    {
        data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_acc_factor) / LSM6DSL_ACC_MUL;
        data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_acc_factor) / LSM6DSL_ACC_MUL;
        data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_acc_factor) / LSM6DSL_ACC_MUL;
    }
//    printf("read acc cur_acc_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
//    		,cur_acc_factor,data[0],data[1],data[2]);
    *x_data = data[DATA_AXIS_X];
    *y_data = data[DATA_AXIS_Y];
    *z_data = data[DATA_AXIS_Z];
	return 0;
}

uint8_t LSM6DSL_gyro_read(int32_t *x_data,int32_t *y_data,int32_t *z_data)
{
	HAL_StatusTypeDef hi2c2_status = 0x00;
	/*read 0X22,0X23,0X24,0X25,0X26,0X27*/
	uint8_t addr[6] = {LSM6DSL_ACC_GYRO_OUTX_L_G,LSM6DSL_ACC_GYRO_OUTX_H_G,
			LSM6DSL_ACC_GYRO_OUTY_L_G,LSM6DSL_ACC_GYRO_OUTY_H_G,
			LSM6DSL_ACC_GYRO_OUTZ_L_G,LSM6DSL_ACC_GYRO_OUTZ_H_G};
	uint8_t val[6] = {0};
	for(uint8_t i=0; i<6; i++){
		hi2c2_status = HAL_I2C_Mem_Read(&hi2c4,LSM6DSL_I2C_ADDR,addr[i],1,&val[i],1,1000);
		if(HAL_OK!=hi2c2_status){
			printf("get LSM6DSL gyro_read[0X%02X] error\r\n",addr[i]);
			return 1;
		}
	}
//	printf("read gyro reg_data 1:%02X, 2:%02X, 3:%02X, 4:%02X, 5:%02X ,6:%02X\r\n"
//	    		,val[0],val[1],val[2],val[3],val[4],val[5]);
	int32_t data[3] = {0};
	data[DATA_AXIS_X] = (int16_t)((((int32_t)((int8_t)val[1])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[0]));
	data[DATA_AXIS_Y] = (int16_t)((((int32_t)((int8_t)val[3])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[2]));
	data[DATA_AXIS_Z] = (int16_t)((((int32_t)((int8_t)val[5])) << LSM6DSL_SHIFT_EIGHT_BITS) | (val[4]));

    if (cur_gyro_factor != 0) {
        data[DATA_AXIS_X] = (data[DATA_AXIS_X] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
        data[DATA_AXIS_Y] = (data[DATA_AXIS_Y] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
        data[DATA_AXIS_Z] = (data[DATA_AXIS_Z] * cur_gyro_factor) / LSM6DSL_GYRO_MUL;
    }
//    printf("read gyro cur_gyro_factor:%ld, X:%ld,Y:%ld,Z:%ld\r\n"
//    		,cur_gyro_factor,data[0],data[1],data[2]);
    *x_data = data[DATA_AXIS_X];
    *y_data = data[DATA_AXIS_Y];
    *z_data = data[DATA_AXIS_Z];
	return 0;
}

2.3 传感器数据采集与输出源码设计

        在main.c文件中,添加各个外设驱动头文件支持

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "../../ICore/key/key.h"
#include "../../ICore/led/led.h"
#include "../../ICore/print/print.h"
#include "../../ICore/usart/usart.h"
#include "../../ICore/LSM6DSL/LSM6DSL.h"
/* USER CODE END Includes */

        打印实时采集的三轴加速度信息

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
	if(acc_x>0)
		printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
	if(acc_y>0)
		printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
	if(acc_z>0)
		printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
}
/* USER CODE END 0 */

        在main函数中,初始化各个外设

int main(void)
{
  /* USER CODE BEGIN 1 */
    int32_t acc_x,acc_y,acc_z;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C4_Init();
  MX_LPUART1_UART_Init();
  /* USER CODE BEGIN 2 */
  ResetPrintInit(&hlpuart1);
  HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
  HLPUSART_RX_STA = 0;
  //LSM6DSL
  LSM6DSL_init();
  LSM6DSL_acc_st_open();
  acc_x = acc_y = acc_z = 0;
  uint8_t menu = 0;
  uint8_t step_size = 3;
  /* USER CODE END 2 */

        在main函数循环体内,实现根据按键采集传感器数据(开发板正面朝上):

        1)保持开发板在桌面不动,按键KEY0按下时,采集静止不动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[1,0,0],再次按下KEY0时停止采集

        2)保持开发板在桌面左右移动,按键KEY1按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,1,0],再次按下KEY1时停止采集

        3)保持开发板在桌面上上下移动(垂直方向),按键KEY2按下时,采集左右移动姿态时的三轴加速度,并每采集三次,输出一次姿态结果[0,0,1],再次按下KEY2时停止采集

 /* USER CODE BEGIN WHILE */
  while (1)
  {
	  if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
  		  printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
  		  HLPUSART_RX_STA=0;//接收错误,重新开始
  		  HAL_Delay(100);//等待
  	  }
	  if(KEY_0())
	  {
		  if(menu&0x01)
			  menu &= 0XFE;	//取消静止不动数据刷新
		  else{
			  menu |= 0X01; //开启静止不动数据刷新
		  }
		  menu &= 0XF9; //取消其他数据刷新
	  }
	  if(KEY_1())
	  {
		  if(menu&0x02)
			  menu &= 0XFD;	//取消左右移动数据刷新
		  else{
			  menu |= 0X02; //开启左右移动数据刷新
		  }
		  menu &= 0XFA; //取消其他数据刷新

	  }
	  if(KEY_2())
	  {
		  if(menu&0x04)
			  menu &= 0XFB; //取消上下移动数据刷新
		  else{
			  menu |= 0X04; //开启上下移动数据刷新
		  }
		  menu &= 0XFC;	//取消其他数据刷新

	  }
	  if(menu&0x01)//静止不动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
	  		printf("1, 0, 0\r\n");
	  		Toggle_led0();
  	  }
  	  if(menu&0x02)//左右移动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
    		printf("0, 1, 0\r\n");
    		Toggle_led1();
  	  }
  	  if(menu&0x04)//上下移动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
    		printf("0, 0, 1\r\n");
    		Toggle_led2();
  	  }
    /* USER CODE END WHILE */

2.4 编辑下载程序,采集数据

        编译程序及加载到开发板

         打开串口助手,连接开发板,先清空屏幕,然后按上述功能操作进行数据采集,每种姿态采集大概一分钟的数据,完成后保存数据。

         创建目录My_HAR_Study,将保存的txt文件拷贝到该目录,并将该文件修改为.csv后缀

 三、模型训练

        在该目录下,创建run_level.py文件,内容如下:

#模型训练文件 myrun.py 训练 epochs 1000次
# myrun.py
'''
开发板(正面朝上)姿态检测
静止不动、左右移动、上下移动

输入层 -> 隐藏层 -> 输出层
'''

# 导入工具包
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD

# %% 读取数据
data = pd.read_csv('SaveWindows2023_1_28_16-31-14.csv', sep=',', header=None)
data_x = data.loc[:, 0:8]  # 取1~9列所有数据
data_y = data.loc[:, 9:11]
data_y.astype(int)
#
print("-x-")
print(data_x[0:2])
print("-y-")
print(data_y[0:2])

# %% 建立模型
model = Sequential()
# Dense(64) 是一个具有 64 个隐藏神经元的全连接层。
# 在第一层必须指定所期望的输入数据尺寸:
# 在这里,是一个 9 维的向量。
model.add(Dense(64, activation='relu', input_dim=9))
model.add(Dense(32, activation='relu'))
model.add(Dense(3, activation='softmax'))

sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
              optimizer=sgd,
              metrics=['accuracy'])

model.fit(data_x, data_y,
          epochs=1000,
          batch_size=72)
score = model.evaluate(data_x, data_y, batch_size=72)

# 保存模型
model.save('myhar.h5')

         当前目录启动命令行工具,运行python3 .\myrun.py命令,

四、cube.AI配置及c模型生成

        回到数据采集工程(stm32L496VGT6_AI),双击.ioc打开cubeMX配置页面。

         添加my_har模型,选择刚刚生成的keras模型文件(.h5),注意值生成模型,不需要应用程序。

         分析结果显示,模型精度很差,意料之中,毕竟只有简单层,实现不了那么复杂姿态识别,但模型没有错误,可以用来演示完开发流程就OK。

         根据分析稍微调整一下heap和stack大小

         生成输出代码如下图所示。

五、模型调用及测试

        在项目属性设置页面,开启float支持

          在main.c源文件中,添加AI模型库的头文件

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdlib.h>
#include "../../ICore/key/key.h"
#include "../../ICore/led/led.h"
#include "../../ICore/print/print.h"
#include "../../ICore/usart/usart.h"
#include "../../ICore/LSM6DSL/LSM6DSL.h"
#include "../../X-CUBE-AI/app/my_har.h"
#include "../../X-CUBE-AI/app/my_har_data.h"
/* USER CODE END Includes */

        在main.c源文件中,添加AI模型库支持函数

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
void out_print(int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
	if(acc_x>0)
		printf("%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
	if(acc_y>0)
		printf("%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
	if(acc_z>0)
		printf("%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
	else
		printf("%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
}

/* Global handle to reference the instantiated C-model */
static ai_handle network = AI_HANDLE_NULL;

/* Global c-array to handle the activations buffer */
AI_ALIGNED(32)
static ai_u8 activations[AI_MY_HAR_DATA_ACTIVATIONS_SIZE];

AI_ALIGNED(32)
static ai_float in_data[AI_MY_HAR_IN_1_SIZE];

AI_ALIGNED(32)
static ai_float out_data[AI_MY_HAR_OUT_1_SIZE];

/* Array of pointer to manage the model's input/output tensors */
static ai_buffer *ai_input;
static ai_buffer *ai_output;
static ai_buffer_format fmt_input;
static ai_buffer_format fmt_output;

#define NSIZE 3

void buf_print(void)
{
	printf("in_data:");
	for (int i=0; i<AI_MY_HAR_IN_1_SIZE; i++)
	{
		printf("%.2f ",((ai_float*)in_data)[i]);
	}
	printf("\n");
	printf("out_data:");
	for (int i=0; i<AI_MY_HAR_OUT_1_SIZE; i++)
	{
		printf("%.2f ",((ai_float*)out_data)[i]);
	}
	printf("\n");
}

void aiPrintBufInfo(const ai_buffer *buffer)
{
	printf("(%lu, %lu, %lu, %lu)", AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_BATCH),
			  	  	  	  	  	  	 AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_HEIGHT),
	                                 AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_WIDTH),
	                                 AI_BUFFER_SHAPE_ELEM(buffer, AI_SHAPE_CHANNEL));
	printf(" buffer_size:%d ", (int)AI_BUFFER_SIZE(buffer));
}

void aiPrintDataType(const ai_buffer_format fmt)
{
    if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_FLOAT)
    	printf("float%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
    else if (AI_BUFFER_FMT_GET_TYPE(fmt) == AI_BUFFER_FMT_TYPE_BOOL) {
    	printf("bool%d ", (int)AI_BUFFER_FMT_GET_BITS(fmt));
    } else { /* integer type */
    	printf("%s%d ", AI_BUFFER_FMT_GET_SIGN(fmt)?"i":"u",
            (int)AI_BUFFER_FMT_GET_BITS(fmt));
    }
}

void aiPrintDataInfo(const ai_buffer *buffer,const ai_buffer_format fmt)
{
	  if (buffer->data)
		  printf(" @0x%X/%d \n",
	        (int)buffer->data,
	        (int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
	    );
	  else
		  printf(" (User Domain)/%d \n",
	        (int)AI_BUFFER_BYTE_SIZE(AI_BUFFER_SIZE(buffer), fmt)
	    );
}

void aiPrintNetworkInfo(const ai_network_report report)
{
	printf("Model name      : %s\n", report.model_name);
	printf(" model signature : %s\n", report.model_signature);
	printf(" model datetime     : %s\r\n", report.model_datetime);
	printf(" compile datetime   : %s\r\n", report.compile_datetime);
	printf(" runtime version    : %d.%d.%d\r\n",
	      report.runtime_version.major,
	      report.runtime_version.minor,
	      report.runtime_version.micro);
	if (report.tool_revision[0])
		printf(" Tool revision      : %s\r\n", (report.tool_revision[0])?report.tool_revision:"");
	printf(" tools version      : %d.%d.%d\r\n",
	      report.tool_version.major,
	      report.tool_version.minor,
	      report.tool_version.micro);
	printf(" complexity         : %lu MACC\r\n", (unsigned long)report.n_macc);
	printf(" c-nodes            : %d\r\n", (int)report.n_nodes);

	printf(" map_activations    : %d\r\n", report.map_activations.size);
	  for (int idx=0; idx<report.map_activations.size;idx++) {
	      const ai_buffer *buffer = &report.map_activations.buffer[idx];
	      printf("  [%d] ", idx);
	      aiPrintBufInfo(buffer);
	      printf("\r\n");
	  }

	printf(" map_weights        : %d\r\n", report.map_weights.size);
	  for (int idx=0; idx<report.map_weights.size;idx++) {
	      const ai_buffer *buffer = &report.map_weights.buffer[idx];
	      printf("  [%d] ", idx);
	      aiPrintBufInfo(buffer);
	      printf("\r\n");
	  }
}

/*
 * Bootstrap
 */
int aiInit(void) {
  ai_error err;

  /* Create and initialize the c-model */
  const ai_handle acts[] = { activations };
  err = ai_my_har_create_and_init(&network, acts, NULL);
  if (err.type != AI_ERROR_NONE) {
	  printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
  };

  ai_network_report report;
  if (ai_my_har_get_report(network, &report) != true) {
      printf("ai get report error\n");
      return -1;
  }

  aiPrintNetworkInfo(report);

  /* Reteive pointers to the model's input/output tensors */
  ai_input = ai_my_har_inputs_get(network, NULL);
  ai_output = ai_my_har_outputs_get(network, NULL);
  //
  fmt_input = AI_BUFFER_FORMAT(ai_input);
  fmt_output = AI_BUFFER_FORMAT(ai_output);

  printf(" n_inputs/n_outputs : %u/%u\r\n", report.n_inputs,
            report.n_outputs);
  printf("input :");
  aiPrintBufInfo(ai_input);
  aiPrintDataType(fmt_input);
  aiPrintDataInfo(ai_input, fmt_input);
  //
  printf("output :");
  aiPrintBufInfo(ai_output);
  aiPrintDataType(fmt_output);
  aiPrintDataInfo(ai_output, fmt_output);
  return 0;
}

int acquire_and_process_data(void *in_data,uint8_t index, int32_t acc_x, int32_t acc_y, int32_t acc_z)
{
	char buf_srt[64]={0};
	if(acc_x>0){
		sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((acc_x*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
	}else{
		sprintf(buf_srt,"%d.%d, ",(acc_x*98)/10000,((-acc_x*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index] =(float)atof(buf_srt);
	}
	if(acc_y>0){
		sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((acc_y*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
	}else{
		sprintf(buf_srt,"%d.%d, ",(acc_y*98)/10000,((-acc_y*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index+1] =(float)atof(buf_srt);
	}
	if(acc_z>0){
		sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((acc_z*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
	}else{
		sprintf(buf_srt,"%d.%d, ",(acc_z*98)/10000,((-acc_z*98)%10000)/100);
		((ai_float*)in_data)[NSIZE*index+2] =(float)atof(buf_srt);
	}
	return 0;
}
/*
 * Run inference
 */
int aiRun(const void *in_data, void *out_data) {
  ai_i32 n_batch;
  ai_error err;

  /* 1 - Update IO handlers with the data payload */
  ai_input[0].data = AI_HANDLE_PTR(in_data);
  ai_output[0].data = AI_HANDLE_PTR(out_data);

  /* 2 - Perform the inference */
  n_batch = ai_my_har_run(network, &ai_input[0], &ai_output[0]);
  if (n_batch != 1) {
	  err = ai_my_har_get_error(network);
	  printf("ai_error_type:%d,ai_error_code:%d\r\n",err.type,err.code);
  };

  return 0;
}

/* USER CODE END 0 */

        在main函数中初始化ai模型

  /* USER CODE BEGIN 2 */
  ResetPrintInit(&hlpuart1);
  HAL_UART_Receive_IT(&hlpuart1,(uint8_t *)&HLPUSART_NewData, 1); //再开启接收中断
  HLPUSART_RX_STA = 0;
  //LSM6DSL
  LSM6DSL_init();
  LSM6DSL_acc_st_open();
  acc_x = acc_y = acc_z = 0;
  uint8_t menu = 0;
  uint8_t step_size = NSIZE;
  //
  aiInit();
  buf_print();
  /* USER CODE END 2 */

        在main函数循环体中,通过串口lpuart1调试发送test,开启将实时数据推送给ai模型

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  if(HLPUSART_RX_STA&0xC000){//溢出或换行,重新开始
  		  printf("%.*s\r\n",HLPUSART_RX_STA&0X0FFF, HLPUSART_RX_BUF);
  		if(strstr((const char*)HLPUSART_RX_BUF,(const char*)"test"))
		  {
  		      menu = 0x08;
		  }
  		  HLPUSART_RX_STA=0;//接收错误,重新开始
  		  HAL_Delay(100);//等待
  	  }
	  if(KEY_0())
	  {
		  if(menu&0x01)
			  menu &= 0XFE;	//取消静止不动数据刷新
		  else{
			  menu |= 0X01; //开启静止不动数据刷新
		  }
		  menu &= 0XF9; //取消其他数据刷新
	  }
	  if(KEY_1())
	  {
		  if(menu&0x02)
			  menu &= 0XFD;	//取消左右移动数据刷新
		  else{
			  menu |= 0X02; //开启左右移动数据刷新
		  }
		  menu &= 0XFA; //取消其他数据刷新

	  }
	  if(KEY_2())
	  {
		  if(menu&0x04)
			  menu &= 0XFB; //取消上下移动数据刷新
		  else{
			  menu |= 0X04; //开启上下移动数据刷新
		  }
		  menu &= 0XFC;	//取消其他数据刷新

	  }
	  if(menu&0x01)//静止不动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
	  		printf("1, 0, 0\r\n");
	  		Toggle_led0();
  	  }
  	  if(menu&0x02)//左右移动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
    		printf("0, 1, 0\r\n");
    		Toggle_led1();
  	  }
  	  if(menu&0x04)//上下移动
  	  {
		  for(uint8_t i =0; i<step_size;i++){
	  		LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
	  		out_print(acc_x,acc_y,acc_z);
	  		HAL_Delay(100);//等待
		  }
    		printf("0, 0, 1\r\n");
    		Toggle_led2();
  	  }
  	  if(menu&0x08)//测试
  	  {
  		for(uint8_t i =0; i<step_size;i++){
  			LSM6DSL_acc_read(&acc_x,&acc_y,&acc_z);
  			acquire_and_process_data(in_data,i,acc_x,acc_y,acc_z);
  			HAL_Delay(100);//等待
  		}
  		aiRun(in_data, out_data);
  		buf_print();
  	  }
    /* USER CODE END WHILE */

        编译及下载程序

         串口助手通过lpuart1连接开发板,发送“test”,开启AI计算,静止不动开发板情况如下:

         左右移动测试:

         上下移动(垂直方向)测试:

        通过测试可以看出,基本能识别开发板的行为,若需要更准确的识别,更好数据采集方法,也可以更多姿态行为模式计算(开发板不同朝向、倾斜度等)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/183030.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

技术大佬说我对「压测目标」的分析不够细

前言 前面总结压测类型的时候有简单描述了不同压测类型的从准备-脚本设计-压测的整体过程&#xff0c;但是对于压测对象没有更深入的进行分析总结&#xff0c;导致在压测执行结束后&#xff0c;出现压测结果不准确的情况。所以这边就压测的对象进行单独的总结分析。 在执行压测…

lego-loam学习笔记(三)

前言&#xff1a; 对于lego-loam中点云聚类源码的学习&#xff0c;它使用了广度优先算法&#xff0c;并且使用了数组双指针技巧。 主要分为两个部分&#xff1a; 第一个是labelComponents函数&#xff0c;它的功能是为每个点及其相邻的4个点运算角度&#xff0c;在对角度小于…

微信小程序开发

微信小程序开发 | 前言&#xff1a;本文章中的很大一部分内容的图片&#xff0c;文字信息来源于微信小程序官方文档和网络资源&#xff0c;感谢大家的支持&#xff0c;如文章中有不足和错误的地方&#xff0c;请及时联系作者-白泽。并协同修改&#xff0c;相信大家的帮助会使这…

屏蔽360阻止远程执行变更注册表自启动数据的办法

屏蔽360阻止远程执行变更注册表自启动数据的办法 运程服务器上的程序&#xff0c;由于需要。我在服务器中&#xff0c;加入更新升级自身&#xff08;exe&#xff09;文件&#xff0c;并变更操作系统自启动数据的代码。 实践证明&#xff0c;通过客户端&#xff0c;调用运程服务…

spring 声明式事务 @Transactional 运行原理

注意&#xff1a;如果想要理解spring 的声明式事务&#xff0c;必须先理解AOP 的原理。 一、spring注册 InfrastructureAdvisorAutoProxyCreator 通过 EnableTransactionManagement 可以看到先把TransactionManagementConfigurationSelector通过Import注册到spring。同时注意…

VULNCMS靶机

环境准备 靶机链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;i3j0 虚拟机网络链接模式&#xff1a;桥接模式 攻击机系统&#xff1a;kali linux 2022.03 信息收集 1.查看靶机ip地址 2.探测目标靶机开放端口和服务情况。 nmap -p- -sV -A 192.168.1.108 漏洞…

嵌入式串行接口标准

在嵌入式系统中&#xff0c;经常使用UART接口实现通讯、调试日志数据等功能&#xff0c;但UART是一种异步通信协议&#xff0c;并未定义物理层的电气接口标准。 在板件通信时&#xff0c;UART接口之间通常基于IO直接连接进行通信&#xff08;TTL/CMOS电平标准&#xff0c;3.3V电…

梦熊杯-十二月月赛-白银组题解-B.契约

B. Problem B.契约&#xff08;contract.cpp&#xff09; 内存限制&#xff1a;256 MiB 时间限制&#xff1a;1000 ms 标准输入输出 题目类型&#xff1a;传统 评测方式&#xff1a;文本比较 题目描述&#xff1a; 「璃月」是「契约」的国度。 摩拉克斯认为&#xff0c…

Lua 字符串

Lua 字符串 参考至菜鸟教程。 字符串或串(String)是由数字、字母、下划线组成的一串字符。 Lua 语言中字符串可以使用以下三种方式来表示&#xff1a; 单引号间的一串字符。双引号间的一串字符。[[ 与 ]] 间的一串字符。 以上三种方式的字符串实例如下&#xff1a; string1 …

基于语义分割Ground Truth(GT)转换yolov5目标检测标签(路面积水检测例子)

基于语义分割Ground Truth&#xff08;GT&#xff09;转换yolov5目标检测标签&#xff08;路面积水检测例子&#xff09; 概述 许多目标检测的数据是通过直接标注或者公开平台获得&#xff0c;如果存在语义分割Ground Truth的标签文件&#xff0c;怎么样实现yolov5的目标检测…

【图论】求欧拉回路

前言 你的qq密码是否在圆周率中出现&#xff1f; 一个有意思的编码问题&#xff1a;假设密码是固定位数&#xff0c;设有nnn位&#xff0c;每位是数字0-9&#xff0c;那么这样最短的“圆周率”的长度是多少&#xff1f;或者说求一个最短的数字串定包含所有密码。 理论 一些…

acwing1264_动态求连续区间和

目录 算法分类&#xff1a; 问题描述 算法适用题目范围&#xff1a; 实现代码&#xff1a; 算法分类&#xff1a; 树状数组/线段树 问题描述 给定 n个数组成的一个数列&#xff0c;规定有两种操作&#xff0c;一是修改某个元素&#xff0c;二是求子数列 [a,b]的连续和。 …

1602_MIT 6.828试验环境搭建

全部学习汇总&#xff1a; GreyZhang/g_unix: some basic learning about unix operating system. (github.com) 最近尝试看一下MIT的操作系统教程&#xff0c;找到了一个6.828的课程。看了一下网络上的介绍&#xff0c;看起来这个大家的认可度还是很高的。开动之前&#xff0c…

Android面经_111道安卓基础问题(四大组件BroadCast、内容提供者篇)

该文章涉及的内容主要是&#xff1a;BroadCast、内容提供者&#xff1b; Android基础问题——四大组件之BroadCast、ContentProvider 内容提供者1、BroadCast1.1、Android的广播分类1.2、Android的广播注册方式1.3、广播作用域2、内容提供者Content provider2.1、什么是内容提供…

Google Protobuf 实践使用开发

Android 敏捷开发助手 Lottie动画 轻松使用PNG、JPG等普通图片高保真转SVG图Android 完美的蒙层方案Android MMKV框架引入使用强大无匹的自定义下拉列表Google Protobuf 实践使用开发 Protobuf 实践使用前言Protobuf基本介绍Protobuf 使用配置protobuf 基本语法1. 基本使用2. …

JavaWeb-Ajax

JavaWeb-Ajax 3&#xff0c;Ajax 3.1 概述 AJAX (Asynchronous JavaScript And XML)&#xff1a;异步的 JavaScript 和 XML。 我们先来说概念中的 JavaScript 和 XML&#xff0c;JavaScript 表明该技术和前端相关&#xff1b;XML 是指以此进行数据交换。 3.1.1 作用 AJAX…

用Python绘制傅里叶级数和泰勒级数逼近已知函数的动态过程

文章目录Taylor级数Fourier级数本文代码&#xff1a; Fourier级数和Taylor级数对原函数的逼近动画Taylor级数 级数是对已知函数的一种逼近&#xff0c;比较容易理解的是Taylor级数&#xff0c;通过多项式来逼近有限区间内的函数&#xff0c;其一般形式为 f(x)∑n0Nanxnf(x)\su…

Lua 运算符 - 较为特殊部分

Lua 运算符 - 较为特殊部分 参考至菜鸟教程。 算术运算符 操作符描述实例^乘幂A^2 输出结果 100-负号-A 输出结果 -10//整除运算符(>lua5.3)5//2 输出结果 2在 lua 中&#xff0c;/ 用作除法运算&#xff0c;计算结果包含小数部分&#xff0c;// 用作整除运算&#xff0c;计…

Shiro学习文档

Shiro Java安全框架 1.什么是权限管理 ​ 基本上涉及到用户参与的系统都要进行权限管理&#xff0c;权限管理属于系统安全的范畴&#xff0c;权限管理实现对用户访问系统的控制&#xff0c;按照安全规则或者安全策略控制用户可以访问而且只能访问自己被授权的资源。 权限管理…

oracle mysql postgresql opengauss 批量kill session

oracle alter system kill session sid,serial# immed; &#xff08;根据v$session中查出sid和serial#进行替换&#xff09; 这里提供一个常用脚本&#xff0c;支持跨实例kill会话 &#xff08;替换&1条件或放到脚本调用都行&#xff09; select alter system kill sessi…