线性代数|机器学习-P13计算特征值和奇异值

news2024/11/7 13:54:26

文章目录

  • 1. 特征值
    • 1.1 特征值求解思路
    • 1.1 相似矩阵构造

1. 特征值

1.1 特征值求解思路

我们想要计算一个矩阵的特征值,一般是用如下公式:
∣ ∣ A − λ I ∣ ∣ = 0 → λ 1 , λ 2 , ⋯   , λ n \begin{equation} ||A-\lambda I||=0\rightarrow \lambda_1,\lambda_2,\cdots,\lambda_n \end{equation} ∣∣AλI∣∣=0λ1,λ2,,λn
但这种方法最大的弊端是对于求解n个解的方程来说,太困难了,当n>100以后,简直无法想象,所以我们只有另辟蹊径,这时候我们想到了相似矩阵的性质,假设矩阵A相似于矩阵 B B B,那么矩阵A与矩阵 B B B特征值相同;
∣ ∣ A − λ a I ∣ ∣ = ∣ ∣ B − λ b I ∣ ∣ , B = P − 1 A P \begin{equation} ||A-\lambda_a I||=||B-\lambda_{b} I||,B=P^{-1}AP \end{equation} ∣∣AλaI∣∣=∣∣BλbI∣∣,B=P1AP
∣ ∣ A − λ a I ∣ ∣ = ∣ ∣ P − 1 A P − λ b I ∣ ∣ = ∣ ∣ P − 1 A P − P − 1 λ b I P ∣ ∣ \begin{equation} ||A-\lambda_a I||=||P^{-1}AP -\lambda_{b} I||=||P^{-1}AP -P^{-1}\lambda_{b}I P|| \end{equation} ∣∣AλaI∣∣=∣∣P1APλbI∣∣=∣∣P1APP1λbIP∣∣
∣ ∣ P − 1 A P − P − 1 λ b I P ∣ ∣ = ∣ ∣ P − 1 ∣ ∣ ∣ ∣ A − λ b I ∣ ∣ ∣ ∣ P ∣ ∣ = ∣ ∣ A − λ b I ∣ ∣ \begin{equation} ||P^{-1}AP -P^{-1}\lambda_{b}I P||=||P^{-1}||||A-\lambda_{b}I||||P||=||A-\lambda_{b} I|| \end{equation} ∣∣P1APP1λbIP∣∣=∣∣P1∣∣∣∣AλbI∣∣∣∣P∣∣=∣∣AλbI∣∣

  • 所以得到当矩阵 A ∼ B → λ a = λ b A\sim B\rightarrow \lambda_a=\lambda_b ABλa=λb
    ∣ ∣ A − λ b I ∣ ∣ = ∣ ∣ A − λ b I ∣ ∣ \begin{equation} ||A-\lambda_{b} I||=||A-\lambda_{b} I|| \end{equation} ∣∣AλbI∣∣=∣∣AλbI∣∣
    那我们的思路是如果我们对于原矩阵A无法求特征值,那就找一个与A相似的矩阵B,如果矩阵B是一个上三角矩阵 C C C,那么我们对矩阵C进行 ∣ ∣ C − λ I ∣ ∣ = 0 ||C-\lambda I||=0 ∣∣CλI∣∣=0,就直接发现主对角线上的元素就是特征值,真是方便的思路。

1.1 相似矩阵构造

假设我们有一个矩阵 A 0 A_0 A0,我们知道不管什么方法一定能够通过QR分解,且Q为正交矩阵,R为上三角矩阵。那么可得如下:
A 0 = Q 0 R 0 , Q 0 T Q 0 = I \begin{equation} A_0=Q_0R_0,Q_0^TQ_0=I \end{equation} A0=Q0R0Q0TQ0=I

  • 我们知道,矩阵 Q 0 Q_0 Q0一定可逆,所以矩阵 A 0 A_0 A0左右两边分别乘以 Q 0 T , Q 0 Q_0^T,Q_0 Q0T,Q0
    Q 0 T A 0 Q 0 = Q 0 T Q 0 R 0 Q 0 = R 0 Q 0 \begin{equation} Q_0^TA_0Q_0=Q_0^TQ_0R_0Q_0=R_0Q_0 \end{equation} Q0TA0Q0=Q0TQ0R0Q0=R0Q0

  • 我们发现矩阵A乘以矩阵 Q 0 Q_0 Q0后居然得到了 R 0 Q 0 R_0Q_0 R0Q0,我们定义新的矩阵 A 1 = R 0 Q 0 A_1=R_0Q_0 A1=R0Q0
    Q 0 T A 0 Q 0 = A 1 → λ a 1 = λ a 0 \begin{equation} Q_0^TA_0Q_0=A_1\rightarrow \lambda_{a1}= \lambda_{a0} \end{equation} Q0TA0Q0=A1λa1=λa0

  • 小结1:当我们不断地用正交矩阵Q处理的时候,矩阵 A 1 A_1 A1逐渐会变成上三角矩阵
    在这里插入图片描述

  • 小结2: 当我们矩阵 A 0 A_0 A0通过 Q 0 Q_0 Q0变换成为对角矩阵 Λ \Lambda Λ
    ( Q 0 Q 1 ⋯ Q n ) T A 0 ( Q 0 Q 1 ⋯ Q n ) = A n → λ a 0 = λ a n \begin{equation} (Q_0Q_1\cdots Q_n)^TA_0(Q_0Q_1\cdots Q_n)=A_n\rightarrow \lambda_{a0}= \lambda_{an} \end{equation} (Q0Q1Qn)TA0(Q0Q1Qn)=Anλa0=λan

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1819555.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CPN Tools学习——时间和队列【重要】

-Timed Color Sets 时间颜色集 -Token Stamps 令牌时间戳 -Event Clock 全局/事件/模拟时钟 -Time Delays on Transitions过渡的时间延迟 - List Color Set列表颜色集 - Queue排队 1.时间颜色集 在定时CPN模型令牌中有: (1)象征性的颜…

CTFHUB-SQL注入-Cookie注入

由于本关是cookie注入,就不浪费时间判断注入了,在该页面使用 burp工具 抓包,修改cookie后面,加上SQL语句,关掉burp抓包,就可以在题目页面显示结果了 判断字段数量 发现字段数量是2列 使用id-1 union sele…

智慧工地:构筑未来建筑的智能脉络

在科技日新月异的今天,智慧城市的建设已不再局限于城市生活的方方面面,而是深入到了城市发展的每一个细胞——工地。本文旨在深度剖析智慧工地的核心价值、关键技术及对建筑业转型升级的深远影响。 一、智慧工地:定义与愿景 智慧工地是指运…

~$开头的临时文件是什么?可以删除吗?

(2023.12.4) 在进行Word文档编辑的时候,都会产生一个以~$开头的临时文件,它会自动备份文档编辑内容,若是正常关闭程序,这个文档就会自动消失;而在非正常情况下关闭word文档,如断电&…

智能座舱软件性能与可靠性的评估和改进

随着智能汽车的不断发展,智能座舱在性能与可靠性上暴露出体验不佳、投诉渐多的问题,本文从工程化的角度简述了如何构建智能座舱软件的评估框架,以及如何持续改进其性能和可靠性。 1. 智能座舱软件性能和可靠性表现不佳 据毕马威发布的《2023…

线程池前置知识

并发和并行 并发是指在单核CPU上,多个线程占用不同的CPU时间片。线程在物理上还是串行执行的,但是由于每个线程占用的CPU时间片非常短(比如10ms),看起来就像是多个线程都在共同执行一样,这样的场景称作并发…

认识线性调频信号(LFM)和脉冲压缩

目录 1. 线性调频(LFM)信号:2.Matlab仿真3.脉冲压缩 微信公众号获取更多FPGA相关源码: 1. 线性调频(LFM)信号: 在时域中,一个理想的线性调频信号或脉冲持续时间为T秒,…

CNAS认证是什么?怎么做?

在全球化日益深入的今天,产品质量和安全已经成为企业生存和发展的重要基石。而在这个过程中,CNAS认证作为一种权威性的认可机制,发挥着不可替代的作用。那么,CNAS认证究竟是什么?我们又该如何进行这一认证过程呢&#…

派能协议,逆变器测试问题记录

问题一:逆变器无法进行逆变 通过抓取逆变器与bms的通讯报文,如下: 根据派能协议,报文标黄的对应充放电状态,30 30对应的数据为0 0,说明充放电状态全部置0,导致逆变器无法逆变。 问题二&#xf…

安装好IDEA后,就能够直接开始跑代码了吗?

我实习的第一天,睿哥叫我安装了IDEA,然后我就照做了。 之后,我把gitlab的代码拉下来后,发现好像没有编译运行的按钮,所以我就跑去问睿哥。睿哥当时看了看后,发现原来我没有安装JDK,他就叫我安装…

下载elasticsearch-7.10.2教程

1、ES官网下载地址 Elasticsearch:官方分布式搜索和分析引擎 | Elastic 2、点击下载Elasticsearch 3、点击 View past releases,查看过去的版本 4、选择版本 Elasticsearch 7.10.2,点击 Download,进入下载详情 5、点击 LINUX X8…

LeetCode435无重叠区间

题目描述 给定一个区间的集合 intervals ,其中 intervals[i] [starti, endi] 。返回 需要移除区间的最小数量,使剩余区间互不重叠 。 解析 由于要删除尽可能少的区间 ,因此区间跨度大的一定是要先删除的,这样就有两种贪心思想了…

【ARM Cache 及 MMU 系列文章 6.2 -- ARMv8/v9 如何读取 Cache 内部数据并对其进行解析?】

请阅读【ARM Cache 及 MMU/MPU 系列文章专栏导读】 及【嵌入式开发学习必备专栏】 文章目录 Direct access to internal memoryL1 cache encodingsL1 Cache Data 寄存器Cache 数据读取代码实现测试结果Direct access to internal memory 在ARMv8架构中,缓存(Cache)是用来加…

D 25章 进程的终止

D 25章 进程的终止 440 25.1 进程的终止:_exit()和exit() 440 1. _exit(int status), status 定义了终止状态,父进程可调用 wait 获取。仅低8位可用, 调用 _exit() 总是成功的。 2.程序一般不会调用 _exit(), 而是…

海外盲盒APP系统开发:开拓国际盲盒市场

在互联网的传播下,盲盒在国内外都掀起了风潮,我国盲盒将具有文化元素的盲盒商品投向海外市场中,获得了海外消费者的喜爱,给我国盲盒企业提供了新的商业机遇。盲盒的未知性让玩家在拆盲盒的过程中享受到更多的惊喜感,为…

下载kibana-7.10.2教程

1、官网下载地址: Download Kibana Free | Get Started Now | Elastic 2、进入 Kibana下载界面,点击 View past releases 查看过去的版本 3、选择版本 Elasticsearch 7.10.2,点击 Download 4、点击 LINUX 64-BIT,进行下载 5、下…

高并发挑战?盘点这些架构优化篇技巧,让你的系统焕发新生!

高并发挑战?试试这些垂直优化技巧,让你的系统焕发新生! 背景介绍性能优化优化方向架构演进历程第一阶段:单体架构弊端瓶颈Tomcat与数据库独立部署瓶颈 第二阶段:缓存架构结合本地缓存和分布式缓存瓶颈 第三阶段&#x…

PHP简约轻型聊天室留言源码

无名轻聊是一款phptxt的轻型聊天室。 无名轻聊特点: 自适应电脑/手机 数据使用txt存放,默认显示近50条聊天记录 采用jqueryajax轮询方式,适合小型聊天环境。 访问地址加?zhi进入管理模式,发送 clear 清空聊天记录。 修改在…

C++ 23 之 构造函数和析构函数

c23构造函数和析构函数.cpp #include <iostream> #include <string> using namespace std;class Person2{ public:// 构造函数 没有返回值&#xff0c;不能写void;函数名和类名一致&#xff1b;可以设置参数&#xff0c;可以函数重载&#xff1b;系统自动调用&…

融资融券是什么?深入解析股市杠杆交易!

01 融资融券是什么&#xff1f; 融资融券&#xff0c;简称两融&#xff0c;又称证券信用交易或保证金交易&#xff0c;是股票市场中的一种交易方式。在这种交易中&#xff0c;投资者可以向证券公司借入资金&#xff08;融资&#xff09;来购买股票&#xff0c;或者借入股票&am…