锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测

news2024/12/25 9:13:39

目录

      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

【锂电池剩余寿命RUL预测案例】

锂电池寿命预测 | Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测(完整源码和数据)

1、提取NASA数据集的电池容量,以历史容量作为输入,采用迭代预测的方法对容量进行预测;

2、利用麻雀算法优化 SVR 核参数(选择最佳的SVM核函数参数c和g),通过仿真结果可知SSA-SVR 方法可以提供更精确的电池 RUL预测结果。

3.程序内注释详细,excel数据,方便替换数据。

4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

锂离子电池(Lithium-ion batteries,LIBs)的剩余使用寿命(remaining useful life,RUL)预测在电池故障预测与健康管理(prognostics and health management,PHM)中起着十分重要的作用。准确预测电池RUL 可以提前对存在安全隐患的电池进行维护和更换,以确保储能系统安全可靠。提出一种基于麻雀优化和支持向量回归(SSA-SVR)的方法,可有效提高锂离子电池RUL 预测的准确性。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复Matlab基于SSA-SVR麻雀优化支持向量回归的锂离子电池剩余寿命预测
%% 清空环境
clear;%清工作区
clc;%清命令
close all;%关闭所有的Figure窗口 
format compact;%压缩空格
tic;%开始计时
%% 005号电池
load('B0005.mat')
m1=616; %有616个数据
n1=168; %有168个discharge放电数据
[~,index] = sortrows({B0005.cycle.type}.');
B0005.cycle = B0005.cycle(index);
clear index  %以上3行为将type排序
A=zeros(168,1); %A矩阵为168行1列的零矩阵
j=1;
for i=171:338
    A(j,1)=B0005.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
% 6号电池
load('B0006.mat')
m2=616;
n2=168;
[~,index] = sortrows({B0006.cycle.type}.');
B0006.cycle = B0006.cycle(index);
clear index
B=zeros(168,1);
j=1;
for i=171:338
    B(j,1)=B0006.cycle(i).data.Capacity;
    i=i+1;
    j=j+1;
end
estc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

%%  建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.085 '];
model = svmtrain(t_train, p_train, cmd);

%%  仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%%  适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('SSA-SVR适应度曲线', 'FontSize', 10);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
grid

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1807787.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LLVM Cpu0 新后端10

想好好熟悉一下llvm开发一个新后端都要干什么,于是参考了老师的系列文章: LLVM 后端实践笔记 代码在这里(还没来得及准备,先用网盘暂存一下): 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…

GitLab代码导出 gitlab4j-api 实现

目录 GitLab简介 GitLab 的主要特点包括: GitLab代码导出 gitlab4j-api 添加 gitlab4j-api 依赖 使用 gitlab4j-api 获取特定命名空间下的所有项目 说明 注意事项 GitLab简介 GitLab 是一个开源的代码仓库和协作平台,主要用于版本控制和源代码管理…

无人用过!QRTCN-BiLSTM实现区间预测!区间预测全家桶再更新!

声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 今天对我们之前推出的区间预测全家桶再次进行更新&…

SPSS 27 安装教程(附安装包下载)

SPSS 27 是一款用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品。它最初是为社会科学领域的研究者设计的,但随着其功能和应用的不断扩展,现在已广泛应用于各个领域,如医学、市场调研、教育等。 [安装注意]:安装前…

智能制造 v3.13.11 发布,ERP、在线课堂、表白墙更新

智能制造一体化管理系统 [SpringBoot2 - 快速开发平台],适用于制造业、建筑业、汽车行业、互联网、教育、政府机关等机构的管理。包含文件在线操作、工作日志、多班次考勤、CRM、ERP 进销存、项目管理、EHR、拖拽式生成问卷、日程、笔记、工作计划、行政办公、薪资模…

UE5基础1-下载安装

目录 一.下载 二.安装 三.安装引擎 四.其他 简介: UE5(Unreal Engine 5)是一款功能极其强大的游戏引擎。 它具有以下显著特点: 先进的图形技术:能够呈现出令人惊叹的逼真视觉效果,包括高逼真的光影、材…

Robust Tiny Object Detection in Aerial Images amidst Label Noise

文章目录 AbstractIntroductionRelated WorkMethodsClass-aware Label CorrectionUpdateFilteringTrend-guided Learning StrategyTrend-guided Label ReweightingRecurrent Box RegenerationExperimentpaper Abstract 精确检测遥感图像中的小目标非常困难,因为这类目标视觉信…

【C++题解】1389 - 数据分析

问题:1389 - 数据分析 类型:简单循环 题目描述: 该方法的操作方式为,如果要传递 2 个数字信息给友军,会直接传递给友军一个整数 n(n 是一个 10 位以内的整数),该整数的长度代表要传…

Ps:自动批量处理照片

有很多种方法可以将调色风格一次性应用到多张照片上。 但对于要进行局部修饰的照片,比如人像照片中要去除皮肤上的瑕疵、柔化皮肤上的光影以及均匀肤色等,想要实现成批处理似乎很困难。 随着人工智能技术的不断发展,越来越多的插件具备自动修…

Linux下文件权限管理

任务要求 1. 在跳板机上为开发部门专门创建一个目录,只允许开发部门所有员工使用该目录 2. 其他人员不能进入和查看该目录里的内容 任务分解 1. 在跳板机给开发部门创建目录 2. 对该目录做好权限的管控工作 只允许开发部门的所有人使用,创建、删除…

Day20:LeedCode 654.最大二叉树 617.合并二叉树 700.二叉搜索树中的搜索 98.验证二叉搜索树

654. 最大二叉树 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构…

机器学习--回归模型和分类模型常用损失函数总结(详细)

文章目录 引言 回归模型常用损失函数均方误差(Mean Squared Error, MSE)均方根误差(Root Mean Squared Error, RMSE)平均绝对误差(Mean Absolute Error, MAE)Huber损失(Huber Loss) …

外部排序快速入门详解:基本原理,败者树,置换-选择排序,最佳归并树

文章目录 外部排序1.最基本的外部排序原理2.外部排序的优化2.1 败者树优化方法2.2 置换-选择排序优化方法2.3 最佳归并树 外部排序 为什么要学习外部排序? 答: 在处理数据的过程中,我们需要把磁盘(外存)中存储的数据拿到内存中处理…

导数和微分

导数和微分 flyfish 本文主要论述其中的区别 导数是描述函数变化率的量,它表示函数在某点的瞬时变化速度和切线斜率。 微分是导数的一个线性近似,表示函数在某点处随着自变量变化的增量。 导数和微分在本质上都是研究函数变化的工具,但导数…

算法学习笔记(7.6)-贪心算法(霍夫曼编码)

目录 1.什么是霍夫曼树 2.霍夫曼树的构造过程 3.霍夫曼编码 3.1具体的作用-频率统计 ##实战题目 1.什么是霍夫曼树 给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也…

【数据结构与算法】使用数组实现栈:原理、步骤与应用

💓 博客主页:倔强的石头的CSDN主页 📝Gitee主页:倔强的石头的gitee主页 ⏩ 文章专栏:《数据结构与算法》 期待您的关注 ​ 目录 一、引言 🎄栈(Stack)是什么? &#x1…

Python私教张大鹏 Vue3整合AntDesignVue之Breadcrumb 面包屑

显示当前页面在系统层级结构中的位置&#xff0c;并能向上返回。 何时使用 当系统拥有超过两级以上的层级结构时&#xff1b; 当需要告知用户『你在哪里』时&#xff1b; 当需要向上导航的功能时。 案例&#xff1a;面包屑导航基本使用 核心代码&#xff1a; <template…

【数据结构(邓俊辉)学习笔记】图07——最短路径

文章目录 0. 概述1. 问题2. 最短路径2.1 最短路径树2.1.1 单调性2.1.2 歧义性2.1. 3 无环性 2.2 Dijkstra 算法2.2.1 贪心迭代2.2.2 实现2.2.3 实例2.2.4 复杂度 0. 概述 学习下最短路径和Dijistra算法 1. 问题 给定带权网络G (V, E)&#xff0c;以及源点&#xff08;source…

【NoSQL数据库】Redis命令、持久化、主从复制

Redis命令、持久化、主从复制 redis配置 Redis命令、持久化、主从复制Redis数据类型redis数据库常用命令redis多数据库常用命令1、多数据库间切换2、多数据库间移动数据3、清除数据库内数据 key命令1、keys 命令2、判断键值是否存在exists3、删除当前数据库的指定key del4、获取…

基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度

基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度 一.曲线1.train_acc2.val_acc3.train_loss4.lr 二.代码 本文介绍了如何基于pytorch_lightning测试resnet18不同激活方式在CIFAR10数据集上的精度 特别说明: 1.NoActive:没有任何激活函数 2.SparseActiva…