人员动作行为AI分析系统 yolov5

news2025/1/12 4:07:18

人员动作行为AI分析系统通过python+yolo系列网络学习模型,对现场画面人员行为进行实时分析监测,自动识别出人的各种异常行为动作,立即抓拍存档预警同步回传给后台。 我们使用YOLO算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。

YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。YOLOv5检测算法中还是存在很多可以学习的地方,虽然这些改进思路看来创新点不足,但是它们确定可以提升检测算法的性能。

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

  • 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
  • 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
  • Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
  • Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/179276.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

带滤波器的PID控制仿真-1

采用低通滤波器可有效地滤掉噪声信号,在控制系统的设计中是一种常用的方法。基于低通滤波器的信号处理实例设低通滤波器为:采样时间为1ms,输入信号为带有高频正弦噪声( 100Hz)的低频(0.2Hz)正弦信号。采用低…

离散数学与组合数学-05树

文章目录离散数学与组合数学-05树5.1 认识树5.1.1 树的模型5.1.2 树的应用5.2 无向树5.2.1 定义5.2.2 树的性质5.2.3 性质应用5.3 生成树5.3.1 引入5.3.2 定义5.3.3 算法5.3.4 应用5.4 最小生成树5.4.1 引入5.4.2 定义5.4.3 算法5.5 根树5.5.1 根数定义5.5.2 倒置法5.5.3 树的家…

【编程入门】开源记事本(SwiftUI版)

背景 前面已输出多个系列: 《十余种编程语言做个计算器》 《十余种编程语言写2048小游戏》 《17种编程语言10种排序算法》 《十余种编程语言写博客系统》 《十余种编程语言写云笔记》 本系列对比云笔记,将更为简化,去掉了网络调用&#xff0…

C++模板进阶

这篇文章是对模板初阶的一些补充,让大家在进行深一层的理解。 文章目录1. 非类型模板参数2. 模板的特化2.1 概念2.2 函数模板特化2.3 类模板特化2.3.1 全特化2.3.2 偏特化2.4 类模板特化应用示例3 模板分离编译3.1 什么是分离编译3.2 模板的分离编译3.3 解决方法4.…

【各种**问题系列】什么是 LTS 长期支持

目录 🍁 什么是长期支持(LTS)版本? 🍂 LTS 版本的优点: 🍁 什么是 Ubuntu LTS? 🍂 Ubuntu LTS 软件更新包括什么? 在 Linux 的世界里,特别是谈…

【Java开发】Spring Cloud 08 :链路追踪

任何一个架构难免会出现bug,微服务相比于单体架构日志查询更为困难,因此spring cloud推出了Sleuth等组件的链路追踪技术来实现报错信息的定位及查询。项目源码:尹煜 / coupon-yinyu GitCode1 调用链追踪我们可以想象这样一个场景&#xff0c…

单一数字评估指标、迁移学习、多任务学习、端到端的深度学习

目录1.单一数字评估指标(a single number evaluation metric)有时候要比较那个分类器更好,或者哪个模型更好,有很多指标,很难抉择,这个时候就需要设置一个单一数字评估指标。例1:比较A,B两个分类器的性能&a…

Android MVVM的实现

Android MVVM的实现 前言: 在我们写一些项目的时候,通常会对一些常用的一些常用功能进行抽象封装,简单例子:比如BaseActivity,BaseFragment等等…一般这些Base会去承载一些比如标题栏,主题之类的工作&…

提权漏洞和域渗透历史漏洞整理

Windows提权在线辅助工具 https://i.hacking8.com/tiquan/🌴Kernel privilege escalation vulnerability collection, with compilation environment, demo GIF map, vulnerability details, executable file (提权漏洞合集) https://github.com/Ascotbe/Kernelhu…

恶意代码分析实战 13 反调试技术

13.1 Lab16-01 首先,将可执行文件拖入IDA中。 我们可以看到有三处都调用了sub_401000函数,并且代码都在哪里停止执行。由于没有一条线从这些方框中引出,这就意味着函数可能终止了程序。 右侧每一个大框中都包含一个检查,这个检查…

Makefile学习②:Makefile基本语法

Makefile学习②:Makefile基本语法 Makefile基本语法 目标: 依赖 (Tab)命令 目标:一般是指要编译的目标,也可以是一个动作 依赖:指执行当前目标所要依赖的先项,包括其他目标&#xf…

neural collaborative filtering 阅读笔记

本文主要介绍了一种一种基于神经网络的技术,来解决在含有隐形反馈的基础上进行推荐的关键问题————协同过滤。 2.1 Learning from Implicit Data yui1,(ifinteraction(useru,itemi)isobserved)y_{ui} 1,(if interaction (user u, item i) is observed)yui​1,(…

还在为ElementUI的原生校验方式苦恼吗,快用享受element-ui-verify插件的快乐吧(待续)

element-ui-verify 本文章意在介绍element-ui-verify插件使用&#xff0c;以及对比elementUI原生校验方式&#xff0c;突显该插件用少量代码也能实现原生的校验效果甚至更好。 1.先观察一个示例 <template><d2-container><el-form :model"ruleForm&qu…

二叉树超级经典OJ题

目录1.根据二叉树创建字符串2.二叉树的层序遍历3.二叉树的层序遍历II4.二叉树的最近公共祖先5.二叉搜索树与双向链表6.从前序与中序遍历序列构造二叉树1.根据二叉树创建字符串 根据二叉树创建字符串 给你二叉树的根节点root&#xff0c;请你采用前序遍历的方式&#xff0c;将二…

编码器M法测速仿真(Simulink)

编码器M法和T法测速的详细讲解可以参看下面的文章链接,这里不再赘述,这里主要介绍Simulink里建模仿真,带大家从另一个角度理解编码器测速原理。 PLC通过编码器反馈值计算速度的推荐做法(算法解析+ST代码)_RXXW_Dor的博客-CSDN博客_编码器计算速度程序实例PLC如何测量采集编…

Power BI中类似Vlookup的查询筛选功能如何实现

一、问题描述 在Excel中有一个非常经典的函数Vlookup&#xff0c;可以通过首列查找&#xff0c;返回相对应的其他列的值。这种功能&#xff0c;在Power BI中没有Vlookup函数&#xff0c;那么该如何实现这一功能呢&#xff1f;下面通过一个实例做分析演示。 二、数据源 已知某…

厚积薄发打卡Day114:Debug设计模式:设计原则(二)<接口隔离原则、迪米特法则>

厚积薄发打卡Day114&#xff1a;Debug设计模式&#xff1a;设计原则&#xff08;二&#xff09;<接口隔离原则、迪米特法则> 接口隔离原则 定义 用多个专门的接口&#xff0c;而不使用单一的总接口&#xff0c;客户端不应该依赖它不需要的接口 一个类对一个类的依赖应…

如何将 Spring Boot 项目提交到 Gitee 进行远程管理?

如何将初始化完成的 Spring Boot 项目&#xff0c;提交的 Gitee 仓库&#xff0c;进行远程管理&#xff1f; 目录 如何将初始化完成的Spring Boot项目&#xff0c;提交的Gitee仓库&#xff0c;进行远程管理&#xff1f; 0. 环境说明 1.创建并初始化Spring Boot项目 2.创建…

如何设计一个 70w 在线人数的弹幕系统 ?

背景 现在的抖音、快手等一系列能支持直播的软件如何做到的同一时间万人发弹幕的功能的&#xff1f; 问题分析 带宽压力&#xff1b; 弱网导致的弹幕卡顿、丢失&#xff1b; 性能与可靠性。 带宽优化 启用Http压缩 HTTP压缩是指在Web服务器和浏览器间传输压缩文本内容的方…

网络— — 二层交换机

网络— — 二层交换机 1 交换机端口 g0/3 g&#xff1a;1000M/s0&#xff1a;模块号3&#xff1a;接口号 每个端口网速&#xff1a; Ethernet 10M/s FastEthernet 100M/s GigabitEthernet 1000M/s TenGigabitEthernet 10000Mb/s 2 数据链路层&#xff08;2层&#xff09; Data…