MongoDB~索引使用与优化

news2024/11/20 23:27:36

Study by:

  • https://docs.mongoing.com/indexes
  • https://www.cnblogs.com/Neeo/articles/14325130.html#%E5%85%B6%E4%BB%96%E7%B4%A2%E5%BC%95

作用

如果你把数据库类比为一本书,那书的具体内容是数据,书的目录就是索引,所以索引的目的和作用,就是为了提高数据的查询效率。

和关系型数据库类似,MongoDB 中也有索引。如果没有索引的话,MongoDB 必须执行集合扫描 ,即扫描集合中的每个文档,以选择与查询语句匹配的文档。

如果查询存在合适的索引,MongoDB 可以使用该索引来限制它必须检查的文档数量。并且,MongoDB 可以使用索引中的排序返回排序后的结果。

虽然索引可以显著缩短查询时间,但是使用索引、维护索引是有代价的。在执行写入操作时,除了要更新文档之外,还必须更新索引,这必然会影响写入的性能。因此,当有大量写操作而读操作少时,或者不考虑读操作的性能时,都不推荐建立索引。

索引类型

MongoDB 支持多种类型的索引,包括单字段索引、复合索引、多键索引、哈希索引、文本索引、 地理位置索引等,每种类型的索引有不同的使用场合。

  • 单字段索引: 建立在单个字段上的索引,索引创建的排序顺序无所谓,MongoDB 可以头/尾开始遍历。
  • 复合索引: 建立在多个字段上的索引,也可以称之为组合索引、联合索引。
  • 多键索引:MongoDB 的一个字段可能是数组,在对这种字段创建索引时,就是多键索引。MongoDB 会为数组的每个值创建索引。就是说你可以按照数组里面的值做条件来查询,这个时候依然会走索引。
  • 哈希索引:按数据的哈希值索引,用在哈希分片集群上。
  • 文本索引: 支持对字符串内容的文本搜索查询。文本索引可以包含任何值为字符串或字符串元素数组的字段。一个集合只能有一个文本搜索索引,但该索引可以覆盖多个字段。MongoDB 虽然支持全文索引,但是性能低下,暂时不建议使用。
  • 地理位置索引: 基于经纬度的索引,适合 2D 和 3D 的位置查询。
  • 唯一索引:确保索引字段不会存储重复值。如果集合已经存在了违反索引的唯一约束的文档,则后台创建唯一索引会失败。
  • TTL 索引:TTL 索引提供了一个过期机制,允许为每一个文档设置一个过期时间,当一个文档达到预设的过期时间之后就会被删除。

索引示例

MongoDB 使用 createIndex() 方法来创建索引。
createIndex() 方法基本语法格式如下所示:

db.collection.createIndex( keys, options )

db:数据库的引用。 collection:集合的名称。 keys:一个对象,指定了字段名和索引的排序方向(1 表示升序,-1 表示降序)。
options:一个可选参数,可以包含索引的额外选项。 options 参数是一个对象,可以包含多种配置选项,以下是一些常用的选项:

unique:如果设置为 true,则创建唯一索引,确保索引字段的值在集合中是唯一的。 background:如果设置为
true,则索引创建过程在后台运行,不影响其他数据库操作。 name:指定索引的名称,如果不指定,MongoDB
会根据索引的字段自动生成一个名称。 sparse:如果设置为 true,创建稀疏索引,只索引那些包含索引字段的文档。
expireAfterSeconds:设置索引字段的过期时间,MongoDB 将自动删除过期的文档。 v:索引版本,通常不需要手动设置。
weights:为文本索引指定权重。

// 创建 age 字段的升序索引
db.myCollection.createIndex({ age: 1 });
// 创建 name 字段的文本索引
db.myCollection.createIndex({ name: "text" });
  • 索引创建:
// 创建唯一索引
db.collection.createIndex( { field: 1 }, { unique: true } )

// 创建后台运行的索引
db.collection.createIndex( { field: 1 }, { background: true } )

// 创建稀疏索引
db.collection.createIndex( { field: 1 }, { sparse: true } )

// 创建文本索引并指定权重
db.collection.createIndex( { field: "text" }, { weights: { field: 10 } } )
创建地理空间索引
对于存储地理位置数据的字段,可以使用 2dsphere 或 2d 索引类型来创建地理空间索引。

// 2dsphere 索引,适用于球形地理数据
db.collection.createIndex( { location: "2dsphere" } )

// 2d 索引,适用于平面地理数据
db.collection.createIndex( { location: "2d" } )
  • 创建哈希索引
    从 MongoDB 3.2 版本开始,可以使用哈希索引对字段进行哈希,以支持大范围的数值查找。
db.collection.createIndex( { field: "hashed" } )
  • 查看索引
    使用 getIndexes() 方法可以查看集合中的所有索引:
db.collection.getIndexes()
  • 删除索引
    使用 dropIndex() 或 dropIndexes() 方法可以删除索引:
// 删除指定的索引
db.collection.dropIndex( "indexName" )

// 删除所有索引
db.collection.dropIndexes()

默认索引

在创建集合期间,MongoDB会在_id字段上创建唯一索引,用来防止客户端插入两个具有相同值的文档,我们也不能删除该默认索引,而通常我们在插入文档时,应该忽略该字段,让ObjectId对象来自动生成。

单例索引

MongoDB支持在文档的单个字段上创建自定义的升序/降序索引,称为——单列索引(Single Field Index),也可以称之为单字段索引。

  • 在单列索引中,升序/降序并不影响查询性能。
// 为 age 字段创建索引
db.s1.createIndex({"age": 1})

// 如下的查询将会走索引
db.s1.find({"age": {"$gt": 10}})
{ "_id" : ObjectId("600fe7e79ab2f8c54a73ea77"), "name" : "zhangkai", "age" : 18 }
{ "_id" : ObjectId("600fe7e79ab2f8c54a73ea78"), "name" : "likai", "age" : 20 }

// 从执行计划中,查看是否走了索引
db.s1.find({"age": {"$gt": 10}}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "FETCH",
	"inputStage" : {
		"stage" : "IXSCAN",  // 走了索引扫描
		"keyPattern" : {
			"age" : 1
		},
		"indexName" : "age_1",  // 使用的索引
		"isMultiKey" : false, 
		"multiKeyPaths" : {
			"age" : [ ]
		},
		"isUnique" : false,
		"isSparse" : false,
		"isPartial" : false,
		"indexVersion" : 2,
		"direction" : "forward",
		"indexBounds" : {
			"age" : [
				"(10.0, inf.0]"
			]
		}
	}
}

在嵌入式字段上创建单列索引

// 准备一个新的集合并插入数据
db.s1.drop()
db.s1.insertMany([
    {"name": "zhangkai", "age": 18, "info": {"address": "beijing", "tel": "13011304424"}},
    {"name": "likai", "age": 20, "info": {"address": "shanghai", "tel": "15011304424"}}
])

// 创建索引
db.s1.createIndex({"info.address": 1})

// 查询
db.s1.find({"info.address": "beijing"})
{ "_id" : ObjectId("600fec019ab2f8c54a73ea79"), "name" : "zhangkai", "age" : 18, "info" : [ { "address" : "beijing" }, { "tel" : "13011304424" } ] }
db.s1.find({"info.address": "beijing"}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "FETCH",
	"inputStage" : {
		"stage" : "IXSCAN",  // 走了索引查询
		"keyPattern" : {
			"info.address" : 1
		},
		"indexName" : "info.address_1",  // 使用的索引
		"isMultiKey" : false,
		"multiKeyPaths" : {
			"info.address" : [ ]
		},
		"isUnique" : false,
		"isSparse" : false,
		"isPartial" : false,
		"indexVersion" : 2,
		"direction" : "forward",
		"indexBounds" : {
			"info.address" : [
				"[\"beijing\", \"beijing\"]"
			]
		}
	}
}

注意,当对嵌入式文档执行相等匹配时,字段顺序很重要,嵌入式文档必须完全匹配,才能返回结果。

另外,在嵌入式文档和嵌入式字段创建的索引不能混为一谈:

  • 在嵌入式文档上创建的索引,会对整个嵌入的文档进行索引,它是一个整体,查询时,要进行完全匹配。
  • 在嵌入式字段上创建的索引,只是对嵌入文档的指定字段进行索引,索引部分只包含嵌入文档的指定字段。

复合索引

MongoDB还支持多字段自定义索引,即复合索引(Compound Indexes),也可以称之为组合索引、联合索引。MongoDB中的复合索引在某些方面跟关系型数据库的组合索引是一样的,比如同样支持索引前缀。

复合索引中字段的顺序非常重要。

例如下图中的复合索引由{userid:1, score:-1}组成,则该复合索引首先按照userid升序排序;然后再每个userid的值内,再按照score降序排序。
在这里插入图片描述
在复合索引中,按照何种方式排序,决定了该索引在查询中是否能被应用到。

  • 走复合索引的排序:
db.s2.find().sort({"userid": 1, "score": -1})
db.s2.find().sort({"userid": -1, "score": 1})
  • 不走复合索引的排序:
db.s2.find().sort({"userid": 1, "score": 1})
db.s2.find().sort({"userid": -1, "score": -1})
db.s2.find().sort({"score": 1, "userid": -1})
db.s2.find().sort({"score": 1, "userid": 1})
db.s2.find().sort({"score": -1, "userid": -1})
db.s2.find().sort({"score": -1, "userid": 1})
  • 我们可以通过 explain 进行分析:
db.s2.find().sort({"score": -1, "userid": 1}).explain()

复合索引与索引前缀

复合索引同样支持对索引前缀的查询,例如,考虑以下复合索引:

// 三个字段的复合索引
{"userid": 1, "socore": 1, "age": 1}

// 上面的复合索引有以下索引前缀
{"userid": 1}
{"userid": 1, "score": 1}

在以下情况的查询走索引:

  • userid
  • userid + score
  • userid + score + age。
  • userid + age,尽管索引被使用,但效率不高。
// 为了避免混淆,先清空索引
db.s2.dropIndexes()
// 创建索引
db.s2.createIndex({"userid": 1, "socore": 1, "age": 1}, {"name": "compoundIndex2"})
    
// userid  走索引
db.s2.find({"userid": {"$lt": 3}}).explain()

// userid + score  走索引
db.s2.find({"userid": {"$lt": 3}, "score": {"$lt": 98}}).explain()

// userid + score + age   走索引
db.s2.find({"userid": {"$lt": 3}, "score": {"$lt": 98}, "age": {"$lt": 30}}).explain()

// userid + age   走索引
db.s2.find({"userid": {"$lt": 3}, "age": {"$lt": 30}}).explain()

以下情况不走索引:

  • score。
  • age。
  • score + age。
// score  不走索引
db.s2.find({"score": {"$lt": 98}}).explain()

// age  不走索引
db.s2.find({"age": {"$lt": 30}}).explain()

// score + age   不走索引
db.s2.find({"score": {"$lt": 98}, "age": {"$lt": 30}}).explain()

多键索引

对于包含数组的文档,我们可以使用MongoDB提供了多键索引,为数组中的每个元素创建一个索引键,这些多键索引支持对数组字段的有效查询。

// 准备集合并插入数据
db.s3.drop()
db.s3.insertMany([
    { _id: 5, type: "food", item: "aaa", ratings: [ 5, 8, 9 ]},
    { _id: 6, type: "food", item: "bbb", ratings: [ 5, 9 ]},
    { _id: 7, type: "food", item: "ccc", ratings: [ 9, 5, 8 ]},
    { _id: 8, type: "food", item: "ddd", ratings: [ 9, 5 ] },
    { _id: 9, type: "food", item: "eee", ratings: [ 5, 9, 5 ]}
])

// 基于ratings字段创建多键索引
db.s3.createIndex({ratings:1})

基于一个数组创建索引,MongoDB会自动创建为多键索引,无需刻意指定,另外,多键索引不等于复合索引。

地理空间索引

为了支持对于地理空间坐标数据的有效查询,MongoDB提供了两种特殊的索引:

  • 返回结果时使用平面几何的二维索引。
  • 返回结果时使用球面几何的二维索引。

文本索引

MongoDB提供了一种文本索引类型,支持在集合中搜索字符串内容。

这些文本索引不存储特定语言的停用词(例如the、a、or),而是将集合中的词作为词干,只存储词根。

哈希索引

为了支持基于散列的分片,MongoDB提供了散列索引类型,它对字段值的散列进行索引,这些索引在其范围内的值分布更加随机,但支持相等匹配,不支持基于范围的查询。

唯一索引

唯一索引(Unique Indexes)可确保索引字段不会存储重复值;即对索引字段实施唯一性。默认情况下,MongoDB 在创建集合时会在_id字段上创建唯一索引。

  • 创建唯一索引
// 创建单列唯一索引
// unipue:true声明普通单列索引为唯一索引
db.userinfo.createIndex({"user": 1}, {"unique": true})


// 复合索引中的添加唯一属性
db.userinfo.createIndex({"user": 1, "tel": 1}, {"unique": true})

// 多键索引中添加唯一属性
db.userinfo.createIndex({"info.address": 1, "info.tel": 1}, {"unique": true})

唯一索引的一些限制

  1. 对于那些已经存在的非唯一的列,在其上面创建唯一索引将失败

  2. 对于数组类型的key,相同的值只能插入一次:

// 插入数据
db.s10.insert({"info": [{"tel": 13011303330}]})

// 创建唯一索引
db.s10.createIndex({"info.tel": 1}, {"unique": true})

// 再次插入相同的值,就报错了
db.s10.insert({"info": [{"tel": 13011303330}]})
WriteResult({
	"nInserted" : 0,
	"writeError" : {
		"code" : 11000,
		"errmsg" : "E11000 duplicate key error collection: t1.s10 index: info.tel_1 dup key: { : 13011303330.0 }"
	}
})
  1. MongoDB只允许一篇文档缺少索引字段
// 插入数据,成功
db.s10.insert({"name": "zhangkai"})

// 创建唯一索引,成功
db.s10.createIndex({"name": 1}, {"unique": true})

// 插入重复则报错,符合预期
db.s10.insert({"name": "zhangkai"})  // "errmsg" : "E11000 duplicate key error collection: t1.s10 index: name_1 dup key: { : \"zhangkai\" }"

// 插入一个缺少 name 字段的文档,可以成功
db.s10.insert({"age": 18})  // mongodb会默认为 name 字段设置为null

// 再次插入缺少 name 字段的文档,就会失败,因为mongodb只允许一篇文档缺少索引字段
db.s10.insert({"age": 20})  // "errmsg" : "E11000 duplicate key error collection: t1.s10 index: name_1 dup key: { : null }"   
  1. 不能对哈希索引指定唯一约束

稀疏索引

稀疏索引也叫做间隙索引,它只包含含有索引字段的文档,如果某个文档的不存在索引键,则跳过,所以,这种索引被称之为稀疏索引。

创建稀疏索引

// 准备数据
db.s11.insertMany([
    {"name": "zhangkai"},
    {"name": "likai", "score": 95},
    {"name": "wangkai", "score": 92},
])

// 在创建索引时,指定 sparse:true 将普通索引标记为稀疏索引
db.s11.createIndex({"score": 1}, {"sparse": true})

// 通过查询语句的执行计划,查看稀疏索引的应用情况
db.s11.find({"score": {"$lt": 95}})
{ "_id" : ObjectId("600fb8d164bc3da87653e9f4"), "name" : "wangkai", "score" : 92 }
db.s11.find({"score": {"$lt": 95}}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "FETCH",  // 根据索引检索指定的文档
	"inputStage" : {
		"stage" : "IXSCAN",  // 使用了索引扫描
		"keyPattern" : {
			"score" : 1
		},
		"indexName" : "score_1",  // 索引名称
		"isMultiKey" : false,
		"multiKeyPaths" : {
			"score" : [ ]
		},
		"isUnique" : false,
		"isSparse" : true,  // 索引类型是稀疏索引
		"isPartial" : false,
		"indexVersion" : 2,
		"direction" : "forward",
		"indexBounds" : {
			"score" : [
				"[-inf.0, 95.0)"
			]
		}
	}
}

再来看稀疏索引无法使用的示例:

db.s11.find().sort({"score": 1})
{ "_id" : ObjectId("600fb8d164bc3da87653e9f2"), "name" : "zhangkai" }
{ "_id" : ObjectId("600fb8d164bc3da87653e9f4"), "name" : "wangkai", "score" : 92 }
{ "_id" : ObjectId("600fb8d164bc3da87653e9f3"), "name" : "likai", "score" : 95 }

db.s11.find().sort({"score": 1}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "SORT",
	"sortPattern" : {
		"score" : 1
	},
	"inputStage" : {
		"stage" : "SORT_KEY_GENERATOR",
		"inputStage" : {
			"stage" : "COLLSCAN",  // 全集合扫描
			"direction" : "forward"
		}
	}
}

我们也可以强制使用稀疏索引:

// hint 明确指定索引
db.s11.find().sort({"score": 1}).hint({"score": 1})
{ "_id" : ObjectId("600fb8d164bc3da87653e9f4"), "name" : "wangkai", "score" : 92 }
{ "_id" : ObjectId("600fb8d164bc3da87653e9f3"), "name" : "likai", "score" : 95 }

db.s11.find().hint({"score": 1})  // 跟上一条语句的返回结果一致
{ "_id" : ObjectId("600fb8d164bc3da87653e9f4"), "name" : "wangkai", "score" : 92 }
{ "_id" : ObjectId("600fb8d164bc3da87653e9f3"), "name" : "likai", "score" : 95 }

db.s11.find().hint({"score": 1}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "FETCH",
	"inputStage" : {
		"stage" : "IXSCAN",
		"keyPattern" : {
			"score" : 1
		},
		"indexName" : "score_1",
		"isMultiKey" : false,
		"multiKeyPaths" : {
			"score" : [ ]
		},
		"isUnique" : false,
		"isSparse" : true,
		"isPartial" : false,
		"indexVersion" : 2,
		"direction" : "forward",
		"indexBounds" : {
			"score" : [
				"[MinKey, MaxKey]"
			]
		}
	}
}

// 当然,如果你要对文档进行计数时,不要使用 hint 和稀疏索引
db.s11.count()
->3
db.s11.find().hint({"score": 1}).count()
->2

部分索引

部分索引(Partial Indexes)是MongoDB3.2版本中的新功能,也叫做局部索引。

部分索引仅索引集合中符合指定过滤器表达式的文档,且由于部分索引是集合的子集,所以部分索引具有较低的存储需求,并降低了索引创建和维护的性能成本。部分索引通过指定过滤条件来创建,可以为MongoDB支持的所有索引类型使用部分索引。

部分索引中常用的过滤器表达式

  • 等式表达式,$eq
  • $exists
  • 大于小于等于系列
  • $type
  • and

创建部分索引

// 准备数据
db.s12.insertMany([
    {"name": "zhangkai", "score": 85},
    {"name": "likai", "score": 95},
    {"name": "wangkai", "score": 92},
    {"name": "zhangkai1", "score": 87},
    {"name": "likai1", "score": 97},
    {"name": "wangkai1", "score": 99},
    {"name": "zhangkai2", "score": 25},
    {"name": "likai2", "score": 45},
    {"name": "wangkai2", "score": 32},
])


// 创建部分索引
db.s12.createIndex(
    {"score": 1}, 
    {
        "partialFilterExpression": {
            "score":{
                "$gte": 60
            }
        }
})

// 只有当查询条件大于等于60的时候,才走部分索引
db.s12.find({"score": {"$gte": 60}}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "FETCH",
	"inputStage" : {
		"stage" : "IXSCAN",  // 走了索引
		"keyPattern" : {
			"score" : 1
		},
		"indexName" : "score_1",
		"isMultiKey" : false,
		"multiKeyPaths" : {
			"score" : [ ]
		},
		"isUnique" : false,
		"isSparse" : false,
		"isPartial" : true,
		"indexVersion" : 2,
		"direction" : "forward",
		"indexBounds" : {
			"score" : [
				"[60.0, inf.0]"
			]
		}
	}
}

// 下面示例,不会走部分索引
db.s12.find({"score": {"$gt": 59}}).explain()["queryPlanner"]["winningPlan"]
{
	"stage" : "COLLSCAN",  // 全集合扫描
	"filter" : {
		"score" : {
			"$gt" : 59
		}
	},
	"direction" : "forward"
}

再来看部分索引和唯一索引同时使用时的一些现象:

db.s12.remove({})
db.s12.insertMany([
    {"name": "zhangkai", "score": 85},
    {"name": "likai", "score": 95}
])


db.s12.createIndex(
	{"name": 1},
    {
        "unique": true,
        "partialFilterExpression": {
            "score": {
                "$gt": 60
            }
        }
    }
)



// 插入 name 值相同的文档, 报错,不允许插入
db.s12.insert({"name": "zhangkai", "score": 77})  // "errmsg" : "E11000 duplicate key error collection: t1.s12 index: name_1 dup key: { : \"zhangkai\" }"


// 以下几种情况允许插入
db.s12.insertMany([
    {"name": "zhangkai", "score": 30},  // name 值重复,score 值小于部分索引限制
    {"name": "zhangkai", "score": null},  // name 值重复,score 值为 null
    {"name": "zhaokai"},  // 忽略 score 字段
])

// 文档已存在,再插入就报错
db.s12.insert({"name": "zhangkai", "score": 85})  // score值大于部分索引限制,校验 name 唯一性

// score 值小于部分索引,允许插入重复 name 值
db.s12.insert({"name": "zhaokai", "score": 30})  

// name 值不重复,score值重复,允许插入
db.s12.insert({"name": "sunkai", "score": 70})  

由上例的测试结果可以发现,当对唯一索引添加部分索引时,插入时检查部分索引字段的唯一性,什么意思呢?如上例的索引,它只对于score值大于等于60的文档,才去校验name的唯一性,同时允许姓名不同,score值相同的文档插入。

部分索引和稀疏索对比

  • 部分索引主要是针对那些满足条件的文档(非字段缺失)创建索引,比稀疏索引提供了更具有表现力。

  • 稀疏索引是文档上某些字段的存在与否,存在则为其创建索引,否则该文档没有索引键。

TTL索引

TTL(Time To Live)索引是特殊的单列索引,通过在创建索引时指定expireAfterSeconds参数将普通的单列索引标记为TTL索引,实现为文档的自动过期删除功能。TTL 索引除了有 expireAfterSeconds 属性外,和普通索引一样。

  • MongoDB会开启一个后台线程读取该TTL索引的值来判断文档是否过期,但不会保证已过期的数据会立马被删除,因后台线程每60秒触发一次删除任务,且如果删除的数据量较大,会存在上一次的删除未完成,而下一次的任务已经开启的情况,导致过期的数据也会出现超过了数据保留时间60秒以上的现象。
  • 对于副本集而言,TTL索引的后台进程只会在primary节点开启,在从节点会始终处于空闲状态,从节点的数据删除是由主库删除后产生的oplog来做同步。
  • TTL索引除了有expireAfterSeconds属性外,和普通索引一样。
  • 应用场景:为所有插入的文档指定一个统一的过期时间。指定具体的过期时间,后续插入的记录都会在expireAfterSeconds指定的时间(单位:秒)后自动删除
  • TTL索引的使用限制
  1. TTL索引只支持单例索引,复合索引不支持TTL。
  2. _id字段不支持TTL索引。
  3. 无法在上限集合上创建TTL索引,因为MongoDB无法从上限集合中删除文档。
  4. 如果某个字段已经存在非TTL索引,那么在该字段上无法再创建TTL索引。

覆盖查询

覆盖查询是一种查询现象。

根据官方文档介绍,覆盖查询是以下的查询:

  1. 所有的查询字段是索引的一部分。
  2. 结果中返回的所有字段都在同一索引中。
  3. 查询中没有字段等于null。

当查询条件和查询的投影仅包含索引字段时,MongoDB会直接从索引中返回结果,而不扫描任何文档或者将文档带入内存,这样的查询性能非常高。
在这里插入图片描述
如上图,如果对score字段建立了索引,查询时只返回score字段,这就会触发覆盖索引,即查询结果来自于索引,而不走文档集。

{
   "_id": ObjectId("53402597d852426020000002"),
   "contact": "987654321",
   "dob": "01-01-1991",
   "gender": "M",
   "name": "Tom",
   "user_name": "hello"
}

我们在 users 集合中创建联合索引,字段为 gender 和 user_name

db.users.ensureIndex({gender:1,user_name:1})

现在,该索引会覆盖以下查询:

db.users.find({gender:"M"},{user_name:1,_id:0})

为了让指定的索引覆盖查询,必须显式地指定 _id: 0 来从结果中排除 _id 字段,因为索引不包括 _id 字段。

策略与优化

索引虽然可以提高查询性能,但也会增加写操作的开销。因此,在创建索引时需要权衡查询性能和写入性能。

索引会占用额外的存储空间,特别是对于大型数据集,需要考虑索引的存储成本。通过合理地设计和使用索引,可以大大提高 MongoDB 数据库的查询性能和响应速度,从而更好地支持应用程序的需求。

而且MongoDB的索引是存储在运行内存(RAM)中的,所以必须确保索引的大小不超过内存的限制。如果索引的大小超过了运行内存的限制,MongoDB会删除一些索引,这将导致性能下降。

在创建索引时,需要考虑以下因素:

  1. 查询频率:优先考虑那些经常用于查询的字段。
  2. 字段基数:字段值的基数越高(即唯一值越多),索引的效果越好。
  3. 索引大小:索引的大小会影响数据库的内存占用和查询性能。
  4. 一个集合中索引数量不能超过64个。
  5. 索引名的长度不能超过128个字符。
  6. 一个复合索引最多可以有31个字段。
  7. MongoDB的索引在部分查询条件下是不会生效的。
  • 正则表达式及非操作符,如 n i n , nin, nin,not , 等。
  • 算术运算符,如 $mod, 等。
  • $where自定义查询函数。

在对索引进行优化时,可以考虑以下方法:

  1. 选择合适的索引类型:根据查询需求选择合适的索引类型。
  2. 创建复合索引:对于经常一起使用的字段,考虑创建复合索引以提高查询效率。
  3. 监控索引性能:定期监控索引的使用情况,根据实际需求调整索引。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1791302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++第三方库【httplib】断点续传

什么是断点续传 上图是我们平时在浏览器下载文件的场景,下载的本质是数据的传输。当出现网络异常,浏览器异常,或者文件源的服务器异常,下载都可能会终止。而当异常解除后,重新下载文件,我们希望从上一次下载…

用例篇03

正交表 因素:存在的条件 水平:因素的取值 最简单的正交表:L4(2) 应用 allpairs 来实现正交表。 步骤: 1.根据需求找出因素和水平 2.将因素和水平写入到excel表格中(表格不需要保存)(推荐用…

文本批量高效编辑器:一键在每行结尾添加分隔符,助力文本处理飞速提升!

在信息爆炸的时代,文本处理成为了一项不可或缺的技能。然而,面对大量的文本数据,如何高效地进行处理却成为了一项挑战。这时,一款高效、易用的文本批量编辑器就显得尤为重要。这个软件就是首助编辑高手 首先,打开首助…

fairseq框架使用记录

sh命令 cmd"fairseq-train data-bin/$data_dir--save-dir $save_dir--distributed-world-size $gpu_num -s $src_lang -t $tgt_lang--arch $arch--dropout $dropout--criterion $criterion --label-smoothing 0.1--task mmt_vqa--optimizer adam --adam-betas (0.9, 0.98…

高并发系统限流原理

短时间内巨大的访问流量,我们如何让系统在处理高并发的同时还能保证自身系统的稳定性?估计有人会说,增加机器就可以了,因为我的系统架构设计就是按照分布式思想进行架构设计的,所以可以只需要增加机器就可以解决问题了…

代码随想录算法训练营day41

题目:01背包理论基础、416. 分割等和子集 参考链接:代码随想录 动态规划:01背包理论基础 思路:01背包是所有背包问题的基础,第一次看到比较懵,完全不知道dp数据怎么设置。具体分析还是dp五部曲&#xff…

Vue3实战笔记(58)—从零开始掌握Vue3插槽机制,基础入门

文章目录 前言插槽基础入门总结 前言 不论是组件封装还是分析源码,实际开发中经常接触插槽,插槽是干什么用的呢?组件之间能够接收任意类型的 JavaScript 值作为 props,但组件要如何接收模板内容呢?在某些场景中&#…

openssl 常用命令demo

RSA Private Key的结构(ASN.1) RSAPrivateKey :: SEQUENCE { version Version, modulus INTEGER, -- n publicExponent INTEGER, -- e privateExponent INTEGER, -- d prime1 INTEGER, -- …

k8s学习--ConfigMap详细解释与应用

文章目录 一 什么是configmapConfigMap 的好处ConfigMap 的限制 二.创建ConfigMap的4种方式1.在命令行指定参数创建2.在命令行通过多个文件创建3.在命令行通过文件提供多个键值对创建4.YAML资源清单文件创建 三 configmap的两种使用方法1.通过环境变量的方式传递给pod2.通过vol…

vue3+typescript 使用Codemirror

安装 // npm npm install codemirror-editor-vue3 codemirror^5.65.12// ts版 还需安装: npm install types/codemirror全局注册 修改main.ts: import { createApp } from vueimport App from ./App.vueimport { InstallCodemirro } from "code…

文件编码概念

文件的读取 open()函数: 打开一个已存在的文件,或者创建一个新文件 open(name,mode,encoding) name:是要打开的目标文件名的字符串(可以包含文件所在的具体路径) mode:设置打开文件的模式(访问模式)&am…

LabVIEW步进电机的串口控制方法与实现

本文介绍了在LabVIEW环境中通过串口控制步进电机的方法,涵盖了基本的串口通信原理、硬件连接步骤、LabVIEW编程实现以及注意事项。通过这些方法,用户可以实现对步进电机的精确控制,适用于各种自动化和运动控制应用场景。 步进电机与串口通信…

【Linux】信号(一)

信号我们将从信号产生,信号的保存,信号处理分别进行讲解~ 至少大思路是这样。开始之前还要进行一些基础知识的铺垫。 目录 从生活中提炼一些结论:信号概念的一些储备:信号产生:一、kill指令:二、键盘组合键…

[数据集][目标检测]轮胎检测数据集VOC+YOLO格式439张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):439 标注数量(xml文件个数):439 标注数量(txt文件个数):439 标注类别…

面试官:核心线程数为零时,线程池会处理任务吗?

程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一波电子书籍资料,包含《Effective Java中文版 第2版》《深入JAVA虚拟机》,《重构改善既有代码设计》,《MySQL高性能-第3版》&…

Redis篇 list类型在Redis中的命令操作

list在redis基本的命令 一.基本命令1.lpush和range2.lpushx rpushx3.lpop rpop4.lindex linsert llen5.lrem6.ltrim lset7.blpop brpop 一.基本命令 list在redis中相当于数组或者顺序表. 1.lpush和range 2.lpushx rpushx 3.lpop rpop 4.lindex linsert llen 如果要插入的列表中…

详解 Spark 核心编程之累加器

累加器是分布式共享只写变量 一、累加器功能 ​ 累加器可以用来把 Executor 端的变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在 Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后,传回 Dri…

程序媛:拽姐

更多精彩内容在公众号。 最近都在玩梗图,我也来玩下拽姐的梗图。来说说拽姐做为程序媛的痛。 程序媛的痛不在于996,而在于无休止的攻关。拽姐刚入职听领导说攻关不多,一年也就一次,拽姐心中暗喜,觉得来对了地方。结果…

MySQL之查询性能优化(六)

查询性能优化 查询优化器 9.等值传播 如果两个列的值通过等式关联,那么MySQL能够把其中一个列的WHERE条件传递到另一列上。例如,我们看下面的查询: mysql> SELECT film.film_id FROM film-> INNER JOIN film_actor USING(film_id)-> WHERE f…

百度地图API 教程使用 嵌套到vue3项目中使用,能够定位并且搜索地点名称位置,反向解析获取经度和维度

文章目录 目录 文章目录 流程 小结 概要安装流程技术细节小结 概要 注册百度地图成为开发者: 登录百度账号 注册成功开始下一步 百度地图API是百度提供的一组开发接口,用于在自己的应用程序中集成地图功能。通过百度地图API,您可以实现地图…