【机器学习】探究DQN通过训练来解决AI序列决策问题

news2024/11/16 2:28:49

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱
ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客
本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶
个人主页:xiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客

系列专栏:机器学习系列专栏

"探索未来,掌握人工智能"🚀 点击加入我们的AI学习之旅,让技术变得有趣又易懂,点击跳转
我的目标:"团团等我💪( ◡̀_◡́ ҂)" 

( ⸝⸝⸝›ᴥ‹⸝⸝⸝ )欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​+关注(互三必回)! 

 

目录

 一.AI序列决策问题

1.序列决策问题的特点:

2.解决序列决策问题的AI方法:

3.序列决策问题的应用场景:

二深度Q网络(Deep Q-Networks, DQN)解决序列决策问题

1.什么是DQN 

2.DNN如何训练

三.Python实现DQN算法训练过程


 一.AI序列决策问题

AI序列决策问题是指在人工智能领域中,智能体需要在一个序列的环境中做出一系列决策,以达到某个目标或最大化某种累积奖励的问题。这类问题通常涉及到强化学习,其中智能体通过与环境的交互来学习最优的行为策略。

1.序列决策问题的特点:

  1. 时间维度:决策不是一次性的,而是需要在一系列时间步骤中进行。每个决策都会影响后续的状态和可能的决策。

  2. 状态变化:智能体的每个决策都会使环境从一个状态转移到另一个状态。状态可以是环境的描述,如游戏的当前分数、机器人的位置等。

  3. 奖励反馈:智能体在每个时间步骤做出决策后,环境会提供一个奖励(或惩罚),这是对智能体决策好坏的反馈。

  4. 长期目标:智能体的目标通常是长期的,比如最大化累积奖励、达到最终的胜利状态或完成任务。

  5. 不确定性:智能体在做出决策时可能无法完全了解环境的全部特性,因此需要在不确定性中做出最优的选择。

2.解决序列决策问题的AI方法:

  1. 强化学习:通过智能体与环境的交互来学习最优策略。智能体通过尝试不同的行动并接收环境的奖励或惩罚来学习。

  2. 动态规划:一种基于模型的优化方法,通过预测未来的状态和奖励来计算当前行动的价值。

  3. 蒙特卡洛方法:通过随机模拟来估计行动的价值,适用于难以精确建模的环境。

  4. 时序差分学习:结合了动态规划和蒙特卡洛方法的特点,通过学习状态和行动之间的差异来更新价值估计。

  5. 深度学习:使用深度神经网络来近似复杂的价值函数或策略函数,尤其在状态空间高维且连续时表现出色。

3.序列决策问题的应用场景:

  • 游戏AI:如棋类游戏、电子游戏等,智能体需要通过一系列行动来赢得比赛。
  • 机器人控制:机器人需要根据环境的变化做出连续的移动和操作决策。
  • 自动驾驶汽车:汽车需要根据路况和交通规则做出连续的驾驶决策。
  • 资源管理:如电网管理、网络带宽分配等,需要根据实时数据做出一系列调度决策。

AI序列决策问题是人工智能中一个非常重要且活跃的研究领域,它不仅挑战着智能体在复杂环境中的学习能力,也推动了AI技术在多个领域的应用和发展。

二深度Q网络(Deep Q-Networks, DQN)解决序列决策问题

1.什么是DQN 

DQN属于DRL(深度强化学习)的一种,它是深度学习与Q学习的结合体。使用 Q-learning 因为采用S-A表格的局限性,当状态和行为的组合不可穷尽时,就无法通过查表的方式选取最优的Action了。这时候就该想到深度学习了,想通过深度学习找到最优解在很多情况下确实不太靠谱,但是找到一个无限逼近最优解的次优解,倒是没有问题的。因此DQN实际上,总体思路还是用的Q学习的思路,不过对于给定状态选取哪个动作所能得到的Q值,却是由一个深度神经网络来计算的了,其流程图如下:

  

2.DNN如何训练

现在我们的选择哪个动作,是由DNN来做决定的,因此我们需要训练DNN以使其能达到令人满意的表现。这显然是一个监督学习的问题,那么训练集是什么,标签是什么,损失函数又是什么?
首先,我们DNN的输出值,自然是在给定状态的情况下,执行各action后能得到的Q值。然而事实上我们在很多情况下并不知道最优的Q值是什么,比如自动驾驶、围棋等情况,所以似乎我们没法给出标签。但是什么是不变的呢?Reward
对状态s,执行动作a,那么得到的reward是一定的,而且是不变的!因此需要考虑从reward下手,让预测Q值和真实Q值的比较问题转换成让模型实质上在拟合reward的问题。
如果不能很好的理解,请看下面公式,下面公式中target是什么我们会在后面说到,这里先忽略它,那个红色的 θi- 我们也暂且将它当成 θi来看这个公式描述的就是模型的损失函数,大括号外面就是求一个均方差,我们主要看括号里面。前面被target标出来的地方是这一步得到的reward+下一状态所能得到的最大Q值,它们减去这一步的Q值,那么实际上它们的差就是实际reward减去现有模型认为在s下采取a时能得到的reward值。

现在的问题就已经转换为需要一组训练集,它能够提供一批四元组(s, a, r, s’),其中s’s执行a后的下一个状态。如果能有这样一个四元组,就能够用来训练DNN了,这就是我们要介绍的Experience reply
Experience Reply
前面提到我们需要一批四元组(s, a, r, s’)来进行训练,因此我们需要缓存一批这样的四元组到经验池中以供训练之用。由于每次执行一个动作后都能转移到下一个状态,并获得一个reward,因此我们每执行一次动作后都可以获得一个这样的四元组,也可以将这个四元组直接放入经验池中。
我们知道这种四元组之间是存在关联性的,因为状态的转移是连续的,如果直接按顺序取一批四元组作为训练集,那么是容易过拟合的,因为训练样本间不是独立的!为解决这个问题,我们可以简单地从经验池中随机抽取少量四元组作为一个batch,这样既保证了训练样本是独立同分布的,也使得每个batch样本量不大,能加快训练速度。 训练的伪代码为:

Target Network
上面的代码似乎已经能够正常运行了,为什么又冒出一个target network呢?回想下前面那个公式,这里重新搬到下面来,是不是之前说targetθi-都先忽略,现在就解释一下为什么

 

这个公式里θi-θi肯定是有区别的,不然也不会使用两个符号了。事实上,我们需要设计两个DNN,它们结构完全一样,但是参数不一样,即神经网络中各层的权重、偏置等,一个的参数是θi-,而另一个是θi。我们每次迭代中,更新的是θi而不更新θi-,且规定每运行C步后让θi- = θi。而其θi-所在的网络就被称为target network
为什么要弄这么奇怪的东西?
这也是为了防止过拟合。试想如果只有一个神经网络,那么它就在会不停地更新,那么它所追求的目标是在一直改变的,即在
θ改变的时候,不止Q(s, a)变了,max Q(s’, a’)也变了。这样的好处是使得上面公式中target所标注的部分是暂时固定的,我们不断更新θ追逐的是一个固定的目标,而不是一直改变的目标。
如果做了这种考虑,那么伪代码就要做一点点修改了,修改后如下,大家可以对比着看: 

三.Python实现DQN算法训练过程

在DQN中,Q值表中表示的是当前已学习到的经验。而根据公式计算出的 Q 值是agent通过与环境交互及自身的经验总结得到的一个分数(即:目标 Q 值)。最后使用目标 Q 值(target_q)去更新原来旧的 Q 值(q)。而目标 Q 值与旧的 Q 值的对应关系,正好是监督学习神经网络中结果值与输出值的对应关系。

所以,loss = (target_q - q)^2

即:整个训练过程其实就是 Q 值(q)向目标 Q 值(target_q)逼近的过程。

用TensorFlow实现的Deep Q-Network(DQN)的例子

import tensorflow as tf
import numpy as np
from collections import deque
import random


class DeepQNetwork:
    r = np.array([[-1, -1, -1, -1, 0, -1],
                  [-1, -1, -1, 0, -1, 100.0],
                  [-1, -1, -1, 0, -1, -1],
                  [-1, 0, 0, -1, 0, -1],
                  [0, -1, -1, 1, -1, 100],
                  [-1, 0, -1, -1, 0, 100],
                  ])

    # 执行步数。
    step_index = 0

    # 状态数。
    state_num = 6

    # 动作数。
    action_num = 6

    # 训练之前观察多少步。
    OBSERVE = 1000.

    # 选取的小批量训练样本数。
    BATCH = 20

    # epsilon 的最小值,当 epsilon 小于该值时,将不在随机选择行为。
    FINAL_EPSILON = 0.0001

    # epsilon 的初始值,epsilon 逐渐减小。
    INITIAL_EPSILON = 0.1

    # epsilon 衰减的总步数。
    EXPLORE = 3000000.

    # 探索模式计数。
    epsilon = 0

    # 训练步数统计。
    learn_step_counter = 0

    # 学习率。
    learning_rate = 0.001

    # γ经验折损率。
    gamma = 0.9

    # 记忆上限。
    memory_size = 5000

    # 当前记忆数。
    memory_counter = 0

    # 保存观察到的执行过的行动的存储器,即:曾经经历过的记忆。
    replay_memory_store = deque()

    # 生成一个状态矩阵(6 X 6),每一行代表一个状态。
    state_list = None

    # 生成一个动作矩阵。
    action_list = None

    # q_eval 网络。
    q_eval_input = None
    action_input = None
    q_target = None
    q_eval = None
    predict = None
    loss = None
    train_op = None
    cost_his = None
    reward_action = None

    # tensorflow 会话。
    session = None

    def __init__(self, learning_rate=0.001, gamma=0.9, memory_size=5000):
        self.learning_rate = learning_rate
        self.gamma = gamma
        self.memory_size = memory_size

        # 初始化成一个 6 X 6 的状态矩阵。
        self.state_list = np.identity(self.state_num)

        # 初始化成一个 6 X 6 的动作矩阵。
        self.action_list = np.identity(self.action_num)

        # 创建神经网络。
        self.create_network()

        # 初始化 tensorflow 会话。
        self.session = tf.InteractiveSession()

        # 初始化 tensorflow 参数。
        self.session.run(tf.initialize_all_variables())

        # 记录所有 loss 变化。
        self.cost_his = []

    def create_network(self):
        """
        创建神经网络。
        :return:
        """
        self.q_eval_input = tf.placeholder(shape=[None, self.state_num], dtype=tf.float32)
        self.action_input = tf.placeholder(shape=[None, self.action_num], dtype=tf.float32)
        self.q_target = tf.placeholder(shape=[None], dtype=tf.float32)

        neuro_layer_1 = 3
        w1 = tf.Variable(tf.random_normal([self.state_num, neuro_layer_1]))
        b1 = tf.Variable(tf.zeros([1, neuro_layer_1]) + 0.1)
        l1 = tf.nn.relu(tf.matmul(self.q_eval_input, w1) + b1)

        w2 = tf.Variable(tf.random_normal([neuro_layer_1, self.action_num]))
        b2 = tf.Variable(tf.zeros([1, self.action_num]) + 0.1)
        self.q_eval = tf.matmul(l1, w2) + b2

        # 取出当前动作的得分。
        self.reward_action = tf.reduce_sum(tf.multiply(self.q_eval, self.action_input), reduction_indices=1)
        self.loss = tf.reduce_mean(tf.square((self.q_target - self.reward_action)))
        self.train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.loss)

        self.predict = tf.argmax(self.q_eval, 1)

    def select_action(self, state_index):
        """
        根据策略选择动作。
        :param state_index: 当前状态。
        :return:
        """
        current_state = self.state_list[state_index:state_index + 1]

        if np.random.uniform() < self.epsilon:
            current_action_index = np.random.randint(0, self.action_num)
        else:
            actions_value = self.session.run(self.q_eval, feed_dict={self.q_eval_input: current_state})
            action = np.argmax(actions_value)
            current_action_index = action

        # 开始训练后,在 epsilon 小于一定的值之前,将逐步减小 epsilon。
        if self.step_index > self.OBSERVE and self.epsilon > self.FINAL_EPSILON:
            self.epsilon -= (self.INITIAL_EPSILON - self.FINAL_EPSILON) / self.EXPLORE

        return current_action_index

    def save_store(self, current_state_index, current_action_index, current_reward, next_state_index, done):
        """
        保存记忆。
        :param current_state_index: 当前状态 index。
        :param current_action_index: 动作 index。
        :param current_reward: 奖励。
        :param next_state_index: 下一个状态 index。
        :param done: 是否结束。
        :return:
        """
        current_state = self.state_list[current_state_index:current_state_index + 1]
        current_action = self.action_list[current_action_index:current_action_index + 1]
        next_state = self.state_list[next_state_index:next_state_index + 1]
        # 记忆动作(当前状态, 当前执行的动作, 当前动作的得分,下一个状态)。
        self.replay_memory_store.append((
            current_state,
            current_action,
            current_reward,
            next_state,
            done))

        # 如果超过记忆的容量,则将最久远的记忆移除。
        if len(self.replay_memory_store) > self.memory_size:
            self.replay_memory_store.popleft()

        self.memory_counter += 1

    def step(self, state, action):
        """
        执行动作。
        :param state: 当前状态。
        :param action: 执行的动作。
        :return:
        """
        reward = self.r[state][action]

        next_state = action

        done = False

        if action == 5:
            done = True

        return next_state, reward, done

    def experience_replay(self):
        """
        记忆回放。
        :return:
        """
        # 随机选择一小批记忆样本。
        batch = self.BATCH if self.memory_counter > self.BATCH else self.memory_counter
        minibatch = random.sample(self.replay_memory_store, batch)

        batch_state = None
        batch_action = None
        batch_reward = None
        batch_next_state = None
        batch_done = None

        for index in range(len(minibatch)):
            if batch_state is None:
                batch_state = minibatch[index][0]
            elif batch_state is not None:
                batch_state = np.vstack((batch_state, minibatch[index][0]))

            if batch_action is None:
                batch_action = minibatch[index][1]
            elif batch_action is not None:
                batch_action = np.vstack((batch_action, minibatch[index][1]))

            if batch_reward is None:
                batch_reward = minibatch[index][2]
            elif batch_reward is not None:
                batch_reward = np.vstack((batch_reward, minibatch[index][2]))

            if batch_next_state is None:
                batch_next_state = minibatch[index][3]
            elif batch_next_state is not None:
                batch_next_state = np.vstack((batch_next_state, minibatch[index][3]))

            if batch_done is None:
                batch_done = minibatch[index][4]
            elif batch_done is not None:
                batch_done = np.vstack((batch_done, minibatch[index][4]))

        # q_next:下一个状态的 Q 值。
        q_next = self.session.run([self.q_eval], feed_dict={self.q_eval_input: batch_next_state})

        q_target = []
        for i in range(len(minibatch)):
            # 当前即时得分。
            current_reward = batch_reward[i][0]

            # # 游戏是否结束。
            # current_done = batch_done[i][0]

            # 更新 Q 值。
            q_value = current_reward + self.gamma * np.max(q_next[0][i])

            # 当得分小于 0 时,表示走了不可走的位置。
            if current_reward < 0:
                q_target.append(current_reward)
            else:
                q_target.append(q_value)

        _, cost, reward = self.session.run([self.train_op, self.loss, self.reward_action],
                                           feed_dict={self.q_eval_input: batch_state,
                                                      self.action_input: batch_action,
                                                      self.q_target: q_target})

        self.cost_his.append(cost)

        # if self.step_index % 1000 == 0:
        #     print("loss:", cost)

        self.learn_step_counter += 1

    def train(self):
        """
        训练。
        :return:
        """
        # 初始化当前状态。
        current_state = np.random.randint(0, self.action_num - 1)
        self.epsilon = self.INITIAL_EPSILON

        while True:
            # 选择动作。
            action = self.select_action(current_state)

            # 执行动作,得到:下一个状态,执行动作的得分,是否结束。
            next_state, reward, done = self.step(current_state, action)

            # 保存记忆。
            self.save_store(current_state, action, reward, next_state, done)

            # 先观察一段时间累积足够的记忆在进行训练。
            if self.step_index > self.OBSERVE:
                self.experience_replay()

            if self.step_index > 10000:
                break

            if done:
                current_state = np.random.randint(0, self.action_num - 1)
            else:
                current_state = next_state

            self.step_index += 1

    def pay(self):
        """
        运行并测试。
        :return:
        """
        self.train()

        # 显示 R 矩阵。
        print(self.r)

        for index in range(5):

            start_room = index

            print("#############################", "Agent 在", start_room, "开始行动", "#############################")

            current_state = start_room

            step = 0

            target_state = 5

            while current_state != target_state:
                out_result = self.session.run(self.q_eval, feed_dict={
                    self.q_eval_input: self.state_list[current_state:current_state + 1]})

                next_state = np.argmax(out_result[0])

                print("Agent 由", current_state, "号房间移动到了", next_state, "号房间")

                current_state = next_state

                step += 1

            print("Agent 在", start_room, "号房间开始移动了", step, "步到达了目标房间 5")

            print("#############################", "Agent 在", 5, "结束行动", "#############################")


if __name__ == "__main__":
    q_network = DeepQNetwork()
    q_network.pay()

这个DQN实现是一个简化的版本,简单介绍一下。在实际应用中,可能需要对网络结构、训练过程和超参数进行调整和优化。此外,代码中的 r 矩阵定义了状态转移和奖励,这是一个特定于问题的矩阵,需要根据具体问题进行设计

以上就算关于DQN的简单介绍.感谢你的阅读.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1705919.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux一键安装Docker、kkfileviewer

Linux一键安装Docker、kkfileviewer 一、安装docker 安装docker脚本 vi initDocker.sh脚本内容 #安装前先更新yum&#xff0c;防止连接镜像失败 yum -y update#卸载系统之前的docker&#xff08;可选择&#xff0c;我这里直接注释了&#xff09; #yum remove docker docker…

Geotools--生成等值线

好久没用geotools去写东西了&#xff0c;因为近几年一直在接触所谓数字孪生和可视化相关项目&#xff0c;个人的重心也往前端可视化去倾斜&#xff0c;在后端的开发上到变得停滞下来。 这次用的是geotools 28.4版本&#xff0c;生成等值线的方法在 <dependency><group…

html+CSS部分基础运用7

项目1 设计简易灯箱画廊 1.实验所需素材 在trees文件夹中提供一个MP3文件和18个JPG文件&#xff0c;设计页面时可以使用。 2.编程实现简易灯箱画廊&#xff0c;鼠标单击任一个图像超链接&#xff0c;在底部浮动框架中显示大图像&#xff0c;效果如图4-1所示的页面。 图4-1 简…

中创算力与中国移动初步达成战略合作意向,共同构建智能生态圈!

2024年5月14日&#xff0c;为进一步深化合作&#xff0c;促进业务共同发展&#xff0c;实现双方优势互补。中国移动云能力中心高级专家、郑州移动总经理助理邵根波、管城分公司政企部经理张文孟、航海东路分局张旭红莅临中创算力。中创董事长许伟威、副总经理杨光、技术总监刘朝…

Spring+SpringBoot面试总结(近两万字)

SpringSpringBoot面试总结 一、Spring Bean1.1、bean的生命周期&#xff08;对象的创建使用销毁&#xff09;1.1.1、准备工作1.1.2、创建Bean对象1.1.3、注册销毁 1.2、 bean的作用域1.2.1、配置方式 1.3、 spring 自动装配 bean 有哪些方式&#xff08;存疑存疑&#xff09;1.…

AI绘画Stable Diffusion【艺术写真】:蒙版法图生图,局部重绘实现AI艺术写真

大家好&#xff0c;我是设计师阿威 之前我分享过几篇使用SD插件换脸方式实现AI写真的教程&#xff0c;主要存在2个大的问题。 &#xff08;1&#xff09;人脸相似度 &#xff08;2&#xff09;生成的图片整体色调有时候会比较怪异 对于上面的问题&#xff0c;在对图片质量要…

条款9:利用destructors避免泄露资源

对指针说拜拜。承认吧&#xff0c;你从未真正喜欢过它&#xff0c;对不&#xff1f; 好&#xff0c;你不需要对所有指针说拜拜&#xff0c;但是你真的得对那些用来操控局部性资源(local resources&#xff09;的指针说莎唷娜拉了。 举个例子&#xff0c;你正在为“小动物收养…

Linux漏洞SSL/TLS协议信息泄露漏洞(CVE-2016-2183) - 非常危险(7.5分) 解决办法!升级openssl

漏洞情况 详细描述 TLS是安全传输层协议&#xff0c;用于在两个通信应用程序之间提供保密性和数据完整性。 TLS, SSH, IPSec协商及其他产品中使用的IDEA、DES及Triple DES密码或者3DES及 Triple 3DES存在大约四十亿块的生日界&#xff0c;这可使远程攻击者通过Sweet32攻击&…

不聚焦情绪,不精神内耗:成长的自我修炼

在我们的人生旅途中&#xff0c;总会遇到各种各样的困境和挑战。如何在逆境中保持积极的心态&#xff0c;专注于个人成长&#xff0c;是每一个人都需要面对和思考的问题。这篇文章将探讨如何不抱怨、不指责、不聚焦情绪、不精神内耗&#xff0c;专注于解决困境和个人成长。 问…

基于 IP 的 DDOS 攻击实验

介绍 基于IP的分布式拒绝服务&#xff08;Distributed Denial of Service, DDoS&#xff09;攻击是一种利用大量受控设备&#xff08;通常是僵尸网络&#xff09;向目标系统发送大量请求或数据包&#xff0c;以耗尽目标系统的资源&#xff0c;导致其无法正常提供服务的攻击方式…

swiftui基础组件Image加载图片,以及记载gif动图示例

想要在swiftui中展示图片&#xff0c;可以使用Image这个组件&#xff0c;这个组件可以加载本地图片和网络图片&#xff0c;也可以调整图片大小等设置。先大概看一下Image的方法有哪些可以用。 常用的Image属性 1.调整图像尺寸&#xff1a; 使用 resizable() 方法使图像可调整…

100个 Unity小游戏系列七 -Unity 抽奖游戏专题五 刮刮乐游戏

一、演示效果 二、知识点讲解 2.1 布局 void CreateItems(){var rewardLists LuckyManager.Instance.CalculateRewardId(rewardDatas, Random.Range(4, 5));reward_data_list reward_data_list ?? new List<RewardData>();reward_data_list.Clear();for (int i 0; …

知攻善防应急响应靶机训练-Web3

前言 本次应急响应靶机采用的是知攻善防实验室的Web-3应急响应靶机 靶机下载地址为&#xff1a; https://pan.quark.cn/s/4b6dffd0c51a 相关账户密码 用户:administrator 密码:xj123456xj123456 解题过程 第一题-攻击者的两个IP地址 直接查看apache的log日志搜索.php 发现…

AI助力科研:自动化科学构思生成系统初探

科学研究作为推动创新和知识进步的关键活动&#xff0c;在解决复杂问题和提升人类生活水平方面发挥着至关重要的作用。然而&#xff0c;科学研究的固有复杂性、缓慢的进展速度以及对专业专家的需求&#xff0c;限制了其生产力的提升。为了增强科研效率&#xff0c;本文提出了一…

12.Redis之补充类型渐进式遍历

1.stream 官方文档的意思, 就是 stream 类型就可以用来模拟实现这种事件传播的机制~~stream 就是一个队列(阻塞队列)redis 作为一个消息队列的重要支撑属于是 List blpop/brpop 升级版本.用于做消息队列 2.geospatial 用来存储坐标 (经纬度)存储一些点之后,就可以让用户给定…

据阿谱尔APO Research调研显示,2023年全球热喷涂涂料市场销售额约为110.37亿美元

根据阿谱尔 (APO Research&#xff09;的统计及预测&#xff0c;2023年全球热喷涂涂料市场销售额约为110.37亿美元&#xff0c;预计在2024-2030年预测期内将以超过4.82%的CAGR&#xff08;年复合增长率&#xff09;增长。 热喷涂涂层是指将熔融或加热的金属、合金或陶瓷等材料喷…

【数据结构】P1 数据结构是什么、算法怎样度量

1.1 基本概念与术语 数据&#xff1a; 数据是信息的载体&#xff0c;是所有能被计算机识别以及处理的符号。数据元素&#xff1a; 数据元素是数据基本单位&#xff0c;由若干 数据项 组成&#xff0c;数据项是构成数据元素最小的单位。 e . g . e.g. e.g. 数据元素如一条学生记…

ShardingSphere使用案例

文章目录 一、分表1. 项目架构搭建2. 数据库搭建3. 案例开发一、分库1. 创建新的库2. 修改配置文件一、分表 1. 项目架构搭建 创建Maven项目导入相关依赖<dependencies><

ArcgisPro3.1.5安装手册

ArcgisPro3.1.5安装手册 一、目录介绍: 二、安装教程&#xff1a; (1)安装顺序&#xff1a;最先安装运行环境&#xff08;runtime6.0.5&#xff09;,接着安装install里面的文件&#xff0c;最后复制path里面的文件替换到软件bin文件夹下即可。 (2)具体安装步骤&#xff…

蓝桥杯练习系统(算法训练)ALGO-932 低阶行列式计算

资源限制 内存限制&#xff1a;64.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 给出一个n阶行列式(1<n<9)&#xff0c;求出它的值。 输入格式 第一行给出两个正整数n,p&#xff1b;   接下来n行&…