基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)

news2024/11/25 13:22:26

基于 LlaMA 3 + LangGraph 在windows本地部署大模型 (四)
大家继续看 https://lilianweng.github.io/posts/2023-06-23-agent/的文档内容

第三部分:工具使用

工具的使用是人类的一个显着而显着的特征。我们创造、修改和利用外部物体来完成超出身体和认知极限的事情。为大模型配备外部工具可以显着扩展模型功能。

  • 有些动物制造和使用工具的方式简直就是天才。 海獭漂浮在水中时使用岩石敲开贝壳的照片。虽然其他一些动物也可以使用工具,但其复杂性却无法与人类相比。
    在这里插入图片描述

MRKL

(Karpas et al. 2022)是“模块化推理、知识和语言”的缩写,是一种用于自主代理的神经符号架构。建议 MRKL 系统包含一组“专家”模块,通用 LLM 作为路由器将查询路由到最合适的专家模块。这些模块可以是神经模块(例如深度学习模型)或符号模块(例如数学计算器、货币转换器、天气 API)。

他们做了一个微调 LLM 以调用计算器的实验,使用算术作为测试用例。他们的实验表明,解决口头数学问题比明确表述的数学问题更难,因为大模型(7B Jurassic1-large model)无法可靠地为基本算术提取正确的论据。结果强调了外部符号工具何时可以可靠地工作,知道何时以及如何使用这些工具至关重要,这由大模型的能力决定。

TALM

(工具增强语言模型;Parisi 等人,2022 年)和Toolformer(Schick 等人,2023 年)都对 LM 进行微调,以学习使用外部工具 API。根据新添加的API调用注释是否可以提高模型输出的质量来扩展数据集。请参阅Prompt Engineering 的“外部 API”部分了解更多详细信息。

ChatGPT插件和 OpenAI API 函数调用是大模型在实践中通过工具使用能力增强的好例子。工具API的集合可以由其他开发者提供(如在插件中)或自定义(如在函数调用中)。

HuggingGPT

(Shen et al. 2023)是一个使用 ChatGPT 作为任务规划器的框架,根据模型描述选择 HuggingFace 平台中可用的模型,并根据执行结果总结响应。

在这里插入图片描述
HuggingGPT 工作原理图解
该系统由4个阶段组成:

(1)任务规划:LLM作为大脑,将用户请求解析为多个任务。每个任务有四个关联的属性:任务类型、ID、依赖项和参数。他们使用少量的例子来指导LLM进行任务解析和规划。
指令说明:

The AI assistant can parse user input to several tasks: [{"task": task, "id", task_id, "dep": dependency_task_ids, "args": {"text": text, "image": URL, "audio": URL, "video": URL}}]. The "dep" field denotes the id of the previous task which generates a new resource that the current task relies on. A special tag "-task_id" refers to the generated text image, audio and video in the dependency task with id as task_id. The task MUST be selected from the following options: {{ Available Task List }}. There is a logical relationship between tasks, please note their order. If the user input can't be parsed, you need to reply empty JSON. Here are several cases for your reference: {{ Demonstrations }}. The chat history is recorded as {{ Chat History }}. From this chat history, you can find the path of the user-mentioned resources for your task planning.
AI助手可以将用户输入解析为多个任务:[{“task”:task,“id”,task_id,“dep”:dependency_task_ids,“args”:{“text”:text,“image”:URL,“audio “:网址,“视频”:网址}}]。 “dep”字段表示前一个任务的id,该任务生成当前任务所依赖的新资源。特殊标签“-task_id”是指id为task_id的依赖任务中生成的文本图片、音频和视频。任务必须从以下选项中选择:{{可用任务列表}}。任务之间有逻辑关系,请注意如果无法解析用户输入,则需要回复空 JSON。以下是几种情况供您参考:{{ 演示 }}。聊天记录记录为 {{ Chat History }}。历史记录,您可以找到用户提到的资源的路径,以便您规划任务。

(2) 模型选择:LLM将任务分配给专家模型,其中请求被构建为多项选择题。 LLM 提供了可供选择的模型列表。由于上下文长度有限,需要基于任务类型的过滤。

给定用户请求和调用命令,AI助手帮助用户从模型列表中选择合适的模型来处理用户请求。 AI助手仅输出最合适模型的模型id。输出必须采用严格的 JSON 格式:“id”:“id”,“reason”:“您选择的详细原因”。我们有一个模型列表供您从{{候选模型}}中进行选择。请从列表中选择一种型号。

(3) 任务执行:专家模型执行特定任务并记录结果。

指令说明

有了输入和推理结果,AI助手需要描述过程和结果。前面的阶段可以形成为-用户输入:{{用户输入}},任务规划:{{任务}},模型选择:{{模型分配}},任务执行:{{预测}}。您必须首先以直截了当的方式回答用户的请求。然后描述任务流程,并以第一人称的方式向用户展示你的分析和模型推理结果。如果推理结果包含文件路径,必须告诉用户完整的文件路径。

(4) 响应生成:LLM接收执行结果并向用户提供汇总结果。

为了将 HuggingGPT 投入到现实世界中,需要解决几个挑战:(1)需要提高效率,因为 LLM 推理轮次和与其他模型的交互都会减慢流程; (2) 依赖长上下文窗口来进行复杂任务内容的通信; (3)LLM产出和外部模型服务的稳定性提升。

API-Bank

(Li et al. 2023)是评估工具增强大模型性能的基准。它包含 53 个常用的 API 工具、完整的工具增强的 LLM 工作流程以及涉及 568 个 API 调用的 264 个带注释的对话。 API的选择相当多样化,包括搜索引擎、计算器、日历查询、智能家居控制、日程管理、健康数据管理、账户认证工作流程等等。由于API数量较多,LLM首先要访问API搜索引擎找到合适的API进行调用,然后使用相应的文档进行调用。

在这里插入图片描述
在 API-Bank 工作流程中,大模型需要做出几个决定,在每一步我们都可以评估该决定的准确性。决定包括:

  • 是否需要API调用。
  • 确定要调用的正确 API:如果不够好,大模型需要迭代修改 API 输入(例如,确定搜索引擎 API 的搜索关键字)。
  • 基于API结果的响应:如果结果不满意,模型可以选择细化并再次调用。

该基准测试从三个层面评估代理的工具使用能力:

  • Level-1评估调用API的能力。给定 API 的描述,模型需要确定是否调用给定的 API、正确调用它并正确响应 API 返回。
  • Level-2 检查检索 API 的能力。模型需要搜索可能解决用户需求的API,并通过阅读文档来学习如何使用它们。
  • Level-3 评估除了检索和调用之外规划 API 的能力。考虑到不明确的用户请求(例如安排小组会议、预订旅行的航班/酒店/餐厅),模型可能必须进行多个 API 调用来解决它。

大模型技术分享

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

《企业级生成式人工智能LLM大模型技术、算法及案例实战》线上高级研修讲座

模块一:Generative AI 原理本质、技术内核及工程实践周期详解
模块二:工业级 Prompting 技术内幕及端到端的基于LLM 的会议助理实战
模块三:三大 Llama 2 模型详解及实战构建安全可靠的智能对话系统
模块四:生产环境下 GenAI/LLMs 的五大核心问题及构建健壮的应用实战
模块五:大模型应用开发技术:Agentic-based 应用技术及案例实战
模块六:LLM 大模型微调及模型 Quantization 技术及案例实战
模块七:大模型高效微调 PEFT 算法、技术、流程及代码实战进阶
模块八:LLM 模型对齐技术、流程及进行文本Toxicity 分析实战
模块九:构建安全的 GenAI/LLMs 核心技术Red Teaming 解密实战
模块十:构建可信赖的企业私有安全大模型Responsible AI 实战 

Llama3关键技术深度解析与构建Responsible AI、算法及开发落地实战

1、Llama开源模型家族大模型技术、工具和多模态详解:学员将深入了解Meta Llama 3的创新之处,比如其在语言模型技术上的突破,并学习到如何在Llama 3中构建trust and safety AI。他们将详细了解Llama 3的五大技术分支及工具,以及如何在AWS上实战Llama指令微调的案例。
2、解密Llama 3 Foundation Model模型结构特色技术及代码实现:深入了解Llama 3中的各种技术,比如Tiktokenizer、KV Cache、Grouped Multi-Query Attention等。通过项目二逐行剖析Llama 3的源码,加深对技术的理解。
3、解密Llama 3 Foundation Model模型结构核心技术及代码实现:SwiGLU Activation Function、FeedForward Block、Encoder Block等。通过项目三学习Llama 3的推理及Inferencing代码,加强对技术的实践理解。
4、基于LangGraph on Llama 3构建Responsible AI实战体验:通过项目四在Llama 3上实战基于LangGraph的Responsible AI项目。他们将了解到LangGraph的三大核心组件、运行机制和流程步骤,从而加强对Responsible AI的实践能力。
5、Llama模型家族构建技术构建安全可信赖企业级AI应用内幕详解:深入了解构建安全可靠的企业级AI应用所需的关键技术,比如Code Llama、Llama Guard等。项目五实战构建安全可靠的对话智能项目升级版,加强对安全性的实践理解。
6、Llama模型家族Fine-tuning技术与算法实战:学员将学习Fine-tuning技术与算法,比如Supervised Fine-Tuning(SFT)、Reward Model技术、PPO算法、DPO算法等。项目六动手实现PPO及DPO算法,加强对算法的理解和应用能力。
7、Llama模型家族基于AI反馈的强化学习技术解密:深入学习Llama模型家族基于AI反馈的强化学习技术,比如RLAIF和RLHF。项目七实战基于RLAIF的Constitutional AI。
8、Llama 3中的DPO原理、算法、组件及具体实现及算法进阶:学习Llama 3中结合使用PPO和DPO算法,剖析DPO的原理和工作机制,详细解析DPO中的关键算法组件,并通过综合项目八从零开始动手实现和测试DPO算法,同时课程将解密DPO进阶技术Iterative DPO及IPO算法。
9、Llama模型家族Safety设计与实现:在这个模块中,学员将学习Llama模型家族的Safety设计与实现,比如Safety in Pretraining、Safety Fine-Tuning等。构建安全可靠的GenAI/LLMs项目开发。
10、Llama 3构建可信赖的企业私有安全大模型Responsible AI系统:构建可信赖的企业私有安全大模型Responsible AI系统,掌握Llama 3的Constitutional AI、Red Teaming。

解码Sora架构、技术及应用

一、为何Sora通往AGI道路的里程碑?
1,探索从大规模语言模型(LLM)到大规模视觉模型(LVM)的关键转变,揭示其在实现通用人工智能(AGI)中的作用。
2,展示Visual Data和Text Data结合的成功案例,解析Sora在此过程中扮演的关键角色。
3,详细介绍Sora如何依据文本指令生成具有三维一致性(3D consistency)的视频内容。 4,解析Sora如何根据图像或视频生成高保真内容的技术路径。
5,探讨Sora在不同应用场景中的实践价值及其面临的挑战和局限性。

二、解码Sora架构原理
1,DiT (Diffusion Transformer)架构详解
2,DiT是如何帮助Sora实现Consistent、Realistic、Imaginative视频内容的?
3,探讨为何选用Transformer作为Diffusion的核心网络,而非技术如U-Net。
4,DiT的Patchification原理及流程,揭示其在处理视频和图像数据中的重要性。
5,Conditional Diffusion过程详解,及其在内容生成过程中的作用。
三、解码Sora关键技术解密
1,Sora如何利用Transformer和Diffusion技术理解物体间的互动,及其对模拟复杂互动场景的重要性。
2,为何说Space-time patches是Sora技术的核心,及其对视频生成能力的提升作用。
3,Spacetime latent patches详解,探讨其在视频压缩和生成中的关键角色。
4,Sora Simulator如何利用Space-time patches构建digital和physical世界,及其对模拟真实世界变化的能力。
5,Sora如何实现faithfully按照用户输入文本而生成内容,探讨背后的技术与创新。
6,Sora为何依据abstract concept而不是依据具体的pixels进行内容生成,及其对模型生成质量与多样性的影响。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1666394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

gocator导出图片

想用3D扫描后的图片,但是系统自带的导出方法很麻烦,所以考虑通过sdk导出 首先需要设置点云亮度 这里是导出图片的关键代码 case GoDataMessageType.SurfaceIntensity: { Debug.WriteLine("SurfaceIntensity "); GoSu…

C++ 中的 lambda 表达式

1.概念 lambda表达式实际上是一个匿名类的成员函数,该类由编译器为lambda创建,该函数被隐式地定义为内联。因此,调用lambda表达式相当于直接调用匿名类的operator()函数,这个函数可以被编译器内联优化(建议&#xff0…

BGP第二篇(bgp邻居状态及影响邻居建立的因素)

1、bgp邻居状态 BGP对等体的交互过程中存在6种状态机: 空闲(Idle) 连接(Connect) 活跃 (Active) Open报文已发送(OpenSent) Open报文已确认(OpenConfirm&…

Redis 源码安装和入门介绍

Linux下的redis源码安装 redis介绍 Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。它支持多种类型的数据结构,如 字符串(strings),…

医疗图像处理2023年CVPR:Label-Free Liver Tumor Segmentation-无标签肝肿瘤分割

目录 一、摘要 二、介绍 三、相关工作 四、网络框架 1.位置选择 2.纹理处理 3.形状生成 4.后处理 5.参数设计 五、实验 1.数据集: 2.评价指标: 3.实现: 4.结果: 六、结论 一、摘要 通过在CT扫描中使用合成肿瘤&am…

秋招算法刷题10(栈和队列)

0509 232.用栈实现队列 class MyQueue {Deque<Integer> inStack;Deque<Integer> outStack;public MyQueue() {inStack new ArrayDeque<Integer>();outStack new ArrayDeque<Integer>();}public void push(int x) {inStack.push(x);}public int pop…

【计算机网络】计算机网络概述、计算机网络性能指标 习题1

0 1. 计算机网络可被理解为( )。 A.执行计算机数据处理的软件模块 B. 由自治的计算机互连起来的集合体 C.多个处理器通过共享内存实现的紧耦合系统 D. 用于共同完成一项任务的分布式系统 0 2.计算机网络最基本的功能是( )。 A.数据通信 B. 资源共享 C. 分布式处理 D. 信息综合…

关于一致性,你该知道的事儿(上)

关于一致性&#xff0c;你该知道的事儿&#xff08;上&#xff09; 前言一、缓存一致性二、内存模型一致性三、事务一致性四、分布式事务一致性4.1 分布式系统的一些挑战4.2 关于副本的一些概念4.3 分布式事务之共识问题4. 3.1 PC(two-phase commit, 2PC)4.3.2 Raft 三、后记参…

[240512] x-cmd 发布 v0.3.6: (se,wkp,ddgo...)x( kimi,gemini,gpt...)

目录 x-cmd 发布 v0.3.6新增了 jina 模块新增了 ddgo 模块新增了 se 模块wkp 模块新增了 writer 模块cosmo 模块 x-cmd 发布 v0.3.6 本次版本的最新引入的功能都是目的为了进一步探索 LLM 的使用。 本版本的改进分为两类&#xff1a;资讯类模块&#xff08;Wikipedia&#xf…

现代制造之Solidworks三维建模篇

现代制造 有现代技术支撑的制造业&#xff0c;即无论是制造还是服务行业&#xff0c;添了现代两个字不过是因为有了现代科学技术的支撑&#xff0c;如发达的通信方式&#xff0c;不断发展的互联网&#xff0c;信息化程度加强了&#xff0c;因此可以为这两个行业增加了不少优势…

【matlab基础知识代码】(十八)无约束最优化问题

min下面的x称为优化向量或者是决策变量 匿名函数法 >> f(x)(x(1)^2-2*x(1))*exp(-x(1)^2-x(2)^2-x(1)*x(2)); x0[0; 0]; [x,b,c,d]fminsearch(f,x0), x 0.6111 -0.3056 b -0.6414 c 1 d 包含以下字段的 struct: iterations: 72 funcCount: 137 algor…

【JavaEE 初阶(五)】文件操作和IO

❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多文件操作 目录 1.前言2.认识文件3.文件操作3.1File 属性3.2构造方法3.3File类方法 4.文件内容操作4.1R…

python内置类memoryview()详解

memoryview() Python 的一个内置class&#xff0c;可直接使用。它返回给定参数的“内存视图”对象。内存视图对象是一个对支持缓冲区协议&#xff08;如 bytes 或 bytearray&#xff09;的数据的“窗口”或“视图”&#xff0c;它允许你在不复制数据的情况下操作内存中的数据。…

【机器学习】 技术栈和开发环境搭建

各位大佬好 &#xff0c;这里是阿川的博客 &#xff0c; 祝您变得更强 个人主页&#xff1a;在线OJ的阿川 大佬的支持和鼓励&#xff0c;将是我成长路上最大的动力 阿川水平有限&#xff0c;如有错误&#xff0c;欢迎大佬指正 博客目录 技术栈编程语言库框架编辑器项目IDE …

数据分析需要注意哪些法律法规

数据分析 前言一、数据处理过程二、数据收集阶段的法律规则数据收集应具备合法、正当、透明原则数据收集应坚持最小必要原则数据收集应遵守知情-同意规则数据收集应遵守目的明确性要求 三、数据储存的法律规则四、数据使用与处理的阶段的法律规则数据安全保护义务按照数据分级分…

Linux:文件IO

Linux&#xff1a;文件IO C语言 文件IOfopen Linux 文件IOopen接口close接口write接口read接口 内存文件管理struct filestruct files_struct文件描述符 fd 缓冲区 C语言 文件IO 在正式讲解Linux中是如何对文件进行IO前&#xff0c;我们先简单回顾以下C语言中&#xff0c;是如…

【牛客】SQL206 获取每个部门中当前员工薪水最高的相关信息

1、描述 有一个员工表dept_emp简况如下&#xff1a; 有一个薪水表salaries简况如下&#xff1a; 获取每个部门中当前员工薪水最高的相关信息&#xff0c;给出dept_no, emp_no以及其对应的salary&#xff0c;按照部门编号dept_no升序排列&#xff0c;以上例子输出如下: 2、题目…

项目1:STM32+DHT11+FreeRTOS+emwin+LCD

第一部分&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;&#xff01;************ 【屏幕显示DHT11数据】 面向对象的思想编写硬件驱动程序&#xff0c;DHT11采集环境中的温湿度数据。使用FreeRTOS提供的任务间通信、同步、互斥&#xff0c;将DHT…

【Linux】AlmaLinux 9.4版本发布

AlmaLinux 9.4 正式版发布&#xff0c;该版本基于 Redhat Enterprise 9.4&#xff0c;内核版本号&#xff1a; 5.14.0-427.13.1.el9_4.x86_64 相对于Rocky Linux&#xff0c; AlmaLinux更加的稳定&#xff0c;生产环境建议使用AlmaLinux来替代CentOS 7.x AlmaLinux 9.4版本系统…

MIPI DPHY HS传输模式SoT和EoT的传输值

目录 1. 高速传输模式的传输序列 2. SoT传输序列 3. EoT传输序列 1. 高速传输模式的传输序列 Mipi DPHY的高速数据传输&#xff08;HST&#xff1a;High Speed Transmission&#xff09;以突发&#xff08;Burst&#xff09;方式发生。 为了帮助接收机同步&#xff1a; (1) …