目录链接:
力扣编程题-解法汇总_分享+记录-CSDN博客
GitHub同步刷题项目:
https://github.com/September26/java-algorithms
原题链接:力扣
描述:
机器人在一个无限大小的 XY 网格平面上行走,从点 (0, 0)
处开始出发,面向北方。该机器人可以接收以下三种类型的命令 commands
:
-2
:向左转90
度-1
:向右转90
度1 <= x <= 9
:向前移动x
个单位长度
在网格上有一些格子被视为障碍物 obstacles
。第 i
个障碍物位于网格点 obstacles[i] = (xi, yi)
。
机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续尝试进行该路线的其余部分。
返回从原点到机器人所有经过的路径点(坐标为整数)的最大欧式距离的平方。(即,如果距离为 5
,则返回 25
)
注意:
- 北表示
+Y
方向。 - 东表示
+X
方向。 - 南表示
-Y
方向。 - 西表示
-X
方向。
示例 1:
输入:commands = [4,-1,3], obstacles = [] 输出:25 解释: 机器人开始位于 (0, 0): 1. 向北移动 4 个单位,到达 (0, 4) 2. 右转 3. 向东移动 3 个单位,到达 (3, 4) 距离原点最远的是 (3, 4) ,距离为 32 + 42 = 25
示例 2:
输入:commands = [4,-1,4,-2,4], obstacles = [[2,4]] 输出:65 解释:机器人开始位于 (0, 0): 1. 向北移动 4 个单位,到达 (0, 4) 2. 右转 3. 向东移动 1 个单位,然后被位于 (2, 4) 的障碍物阻挡,机器人停在 (1, 4) 4. 左转 5. 向北走 4 个单位,到达 (1, 8) 距离原点最远的是 (1, 8) ,距离为 12 + 82 = 65
提示:
1 <= commands.length <= 104
commands[i]
is one of the values in the list[-2,-1,1,2,3,4,5,6,7,8,9]
.0 <= obstacles.length <= 104
-3 * 104 <= xi, yi <= 3 * 104
- 答案保证小于
231
解题思路:
* 874. 模拟行走机器人
* -2:左转90
* -1:右转90
* 1<=x<=9,移动长度
* 解题思路:
* 首先我们看范围,1 <= commands.length <= 10^4,0 <= obstacles.length <= 10^4。
* 则肯定不能是n*m的复杂度,否则时间会超过。
* 但是commands的遍历肯定是要的,所以我们就想办法解决obstacles,把其变为一个O(1)或者O(lgn)复杂度的查询。
* obstacles按照x轴和y轴分为两个map,key为x或者y坐标,value为这个坐标轴上所有的点,然后进行排序。
* 遍历commands的时候,方向自然不用说,如果遇到了前进或者后退,则判断当前轴距离原点最近的点长度,如果大于command则移动command,否则移动最近长度。
代码:
class Solution874
{
public:
/**
* 找出比tartget找到有序集合中,比目标值相等或者大的
* 或者
* 找到有序集合中,比目标值相等或者小的
*/
int findIndex(vector<int> *list, int target, bool isBigger)
{
int left = 0;
int right = list->size() - 1;
int middle;
int abs = isBigger ? right + 1 : left - 1;
while (left <= right)
{
middle = (left + right) / 2;
if (isBigger)
{
if ((*list)[middle] > target)
{
right = middle - 1;
abs = middle;
}
else
{
left = middle + 1;
}
}
else
{
if ((*list)[middle] < target)
{
abs = middle;
left = middle + 1;
}
else
{
right = middle - 1;
}
}
}
return abs;
}
/**
* forward 方向,加或者减
* value 前进值
* from 起始值
*/
void takeStep(map<int, vector<int>> &xMap, map<int, vector<int>> &yMap, int &x, int &y, int forward, int step)
{
vector<int> *list;
int from = 0;
int *updateValue;
bool isAdd = forward <= 1;
if (forward == 0 || forward == 2)
{
from = y;
if (yMap.find(x) == yMap.end())
{
y = y + (forward == 0 ? step : step * -1);
return;
}
updateValue = &y;
list = &(yMap[x]);
}
else if (forward == 1 || forward == 3)
{
from = x;
if (xMap.find(y) == xMap.end())
{
x = x + (forward == 1 ? step : step * -1);
return;
}
updateValue = &x;
list = &(xMap[y]);
}
int index = findIndex(list, from, isAdd);
if (index == -1 || index == list->size())
{
*updateValue = from + (isAdd ? step : step * -1);
return;
}
// int expect = from + (isAdd ? step : step * -1);//
int canMove = abs((*list)[index] - from) - 1;
if (step > canMove)
{
*updateValue = from + (isAdd ? canMove : canMove * -1);
}
else
{
*updateValue = from + (isAdd ? step : step * -1);
}
}
int correctForward(int forward)
{
if (forward < 0)
{
return 3;
}
if (forward > 3)
{
return 0;
}
return forward;
}
int robotSim(vector<int> &commands, vector<vector<int>> &obstacles)
{
map<int, vector<int>> xMap;
map<int, vector<int>> yMap;
for (vector<int> v : obstacles)
{
int x = v[0];
int y = v[1];
if (xMap.find(y) == xMap.end())
{
xMap[y] = vector<int>();
}
xMap[y].push_back(x);
if (yMap.find(x) == yMap.end())
{
yMap[x] = vector<int>();
}
yMap[x].push_back(y);
}
int max = 0;
// 排序
for (auto at = xMap.begin(); at != xMap.end(); at++)
{
std::vector<int> &value = at->second;
sort(value.begin(), value.end());
}
for (auto at = yMap.begin(); at != yMap.end(); at++)
{
std::vector<int> &value = at->second;
sort(value.begin(), value.end());
}
int forward = 0;
int x = 0;
int y = 0;
for (int i = 0; i < commands.size(); i++)
{
int command = commands[i];
if (command == -2)
{
forward = correctForward(forward - 1);
}
else if (command == -1)
{
forward = correctForward(forward + 1);
}
else
{
takeStep(xMap, yMap, x, y, forward, command);
}
cout << "command:" << command << ",forward:" << forward << ",x:" << x << ",y:" << y << ",value:" << (x * x + y * y) << endl;
max = std::max(max, x * x + y * y);
}
return max;
}
};