STM32之HAL开发——ADC入门介绍

news2024/11/16 3:27:18

ADC简介

模数转换,即Analog-to-Digital Converter,常称ADC,是指将连续变量的模拟信号转换为离散的数字信号的器件,比如将模温度感器产生的电信号转为控制芯片能处理的数字信号0101,这样ADC就建立了模拟世界的传感器和数字世界的信号处理与数据转换的联系。

ADC 功能框图剖析

在这里插入图片描述

框图讲解采用从左到右的方式,跟 ADC 采集数据,转换数据,传输数据的方向
大概一致。

电压输入范围

ADC 输入范围为: VREF- ≤ VIN ≤ VREF+。由 VREF-、 VREF+ 、 VDDA 、 VSSA、这四个外部引脚决定。
我们在设计原理图的时候一般把 VSSA 和 VREF- 接地,把 VREF+ 和 VDDA 接 3V3,得到 ADC 的输入电压范围为: 0~3.3V。

输入通道

我们确定好 ADC 输入电压之后,那么电压怎么输入到 ADC?这里我们引入通道的概念,STM32的 ADC 多达 18 个通道,其中外部的 16 个通道就是框图中的 ADCx_IN0、ADCx_IN1…ADCx_IN5。这 16 个通道对应着不同的 IO 口,具体是哪一个 IO 口可以从手册查询到。
其中ADC1/2/3 还有内部通道: ADC1 的通道 16 连接到了芯片内部的温度传感器, Vrefint 连接到了通道 17。 ADC2 的模拟通道 16 和 17 连接到了内部的 VSS。ADC3 的模拟通道 9、 14、 15、 16 和 17 连接到了内部的 VSS。
在这里插入图片描述
外部的 16 个通道在转换的时候又分为规则通道和注入通道,其中规则通道最多有 16 路,注入通道最多有 4 路。

规则通道

规则通道:顾名思意,规则通道就是很规矩的意思,我们平时一般使用的就是这个通道,或者应该说我们用到的都是这个通道,没有什么特别要注意的可讲。

注入通道

注入,可以理解为插入,插队的意思,是一种不安分的通道。它是一种在规则通道转换的时候强行插入要转换的一种通道。如果在规则通道转换过程中,有注入通道插队,那么就要先转换完注入通道,等注入通道转换完成后,再回到规则通道的转换流程。这点跟中断程序很像,都是不安分的主。所以,注入通道只有在规则通道存在时才会出现。

转换顺序

规则序列

规则序列寄存器有 3 个,分别为 SQR3、 SQR2、 SQR1。 SQR3 控制着规则序列中的第一个到第六个转换,对应的位为: SQ1[4:0]~SQ6[4:0],第一次转换的是位 4:0 SQ1[4:0],如果通道 16 想第一次转换,那么在 SQ1[4:0] 写 16 即可。 SQR2 控制着规则序列中的第 7 到第 12 个转换,对应的位为: SQ7[4:0]~SQ12[4:0],如果通道 1 想第 8 个转换,则 SQ8[4:0] 写 1 即可。 SQR1 控制着规则序列中的第 13 到第 16 个转换,对应位为: SQ13[4:0]~SQ16[4:0],如果通道 6 想第 10 个转换,则SQ10[4:0] 写 6 即可。具体使用多少个通道,由 SQR1 的位 L[3:0] 决定,最多 16 个通道。
在这里插入图片描述

注入序列

注入序列寄存器 JSQR 只有一个,最多支持 4 个通道,具体多少个由 JSQR 的 JL[2:0] 决定。如果JL 的值小于 4 的话,则 JSQR 跟 SQR 决定转换顺序的设置不一样,第一次转换的不是 JSQR1[4:0],而是 JCQRx[4:0] , x = (4-JL),跟 SQR 刚好相反。如果 JL=00(1 个转换),那么转换的顺序是从 JSQR4[4:0] 开始,而不是从 JSQR1[4:0] 开始,这个要注意,编程的时候不要搞错。当 JL 等于4 时,跟 SQR 一样。
在这里插入图片描述

触发源

ADC 转换可以由 ADC 控制寄
存器 2: ADC_CR2 的 ADON 这个位来控制,写 1 的时候开始转换,写 0 的时候停止转换,这个
是最简单也是最好理解的开启 ADC 转换的控制方式。
除了这种庶民式的控制方法, ADC 还支持触发转换,这个触发包括内部定时器触发和外部 IO 触
发。触发源有很多,具体选择哪一种触发源,由 ADC 控制寄存器 2:ADC_CR2 的 EXTSEL[2:0] 和
JEXTSEL[2:0] 位来控制。 EXTSEL[2:0] 用于选择规则通道的触发源, JEXTSEL[2:0] 用于选择注入
通道的触发源。选定好触发源之后,触发源是否要激活,则由 ADC 控制寄存器 2:ADC_CR2 的
EXTTRIG 和 JEXTTRIG 这两位来激活。其中 ADC3 的规则转换和注入转换的触发源与 ADC1/2
的有所不同,在框图上已经表示出来。

转换时间

ADC 时钟

ADC 输入时钟 ADC_CLK 由 PCLK2 经过分频产生,最大是 14M,分频因子由 RCC 时钟配置寄存器 RCC_CFGR 的位 15:14 ADCPRE[1:0] 设置,可以是 2/4/6/8 分频,注意这里没有 1 分频。一般我们设置 PCLK2=HCLK=72M。

采样时间

ADC 使用若干个 ADC_CLK 周期对输入的电压进行采样,采样的周期数可通过 ADC 采样时间寄存器 ADC_SMPR1 和 ADC_SMPR2 中的 SMP[2:0] 位设置, ADC_SMPR2 控制的是通道 0~9,ADC_SMPR1 控制的是通道 10~17。每个通道可以分别用不同的时间采样。其中采样周期最小是1.5 个,即如果我们要达到最快的采样,那么应该设置采样周期为 1.5 个周期,这里说的周期就是 1/ADC_CLK。
ADC 的转换时间跟 ADC 的输入时钟和采样时间有关,公式为: Tconv = 采样时间 + 12.5 个周期。当 ADCLK = 14MHZ(最高),采样时间设置为 1.5 周期(最快),那么总的转换时间(最短) Tconv= 1.5 周期 + 12.5 周期 = 14 周期 = 1us。

数据寄存器

一切准备就绪后, ADC 转换后的数据根据转换组的不同,规则组的数据放在 ADC_DR 寄存器,注入组的数据放在 JDRx。

规则数据寄存器

ADC 规则组数据寄存器 ADC_DR 只有一个,是一个 32 位的寄存器,低 16 位在单 ADC 时使用,高 16 位是在 ADC1 中双模式下保存 ADC2 转换的规则数据,双模式就是 ADC1 和 ADC2 同时使用。在单模式下, ADC1/2/3 都不使用高 16 位。因为 ADC 的精度是 12 位,无论 ADC_DR 的高16 或者低 16 位都放不满,只能左对齐或者右对齐,具体是以哪一种方式存放,由 ADC_CR2 的11 位 ALIGN 设置。
ADC 规则组数据寄存器 ADC_DR 只有一个,是一个 32 位的寄存器,低 16 位在单 ADC 时使用,高 16 位是在 ADC1 中双模式下保存 ADC2 转换的规则数据,双模式就是 ADC1 和 ADC2 同时使用。在单模式下, ADC1/2/3 都不使用高 16 位。因为 ADC 的精度是 12 位,无论 ADC_DR 的高16 或者低 16 位都放不满,只能左对齐或者右对齐,具体是以哪一种方式存放,由 ADC_CR2 的11 位 ALIGN 设置。

注入数据寄存器

ADC 注入组最多有 4 个通道,刚好注入数据寄存器也有 4 个,每个通道对应着自己的寄存器,不会跟规则寄存器那样产生数据覆盖的问题。 ADC_JDRx 是 32 位的,低 16 位有效,高 16 位保留,数据同样分为左对齐和右对齐,具体是以哪一种方式存放,由 ADC_CR2 的 11 位 ALIGN 设置。

中断

转换结束中断

数据转换结束后,可以产生中断,中断分为三种:规则通道转换结束中断,注入转换通道转换结束中断,模拟看门狗中断。其中转换结束中断很好理解,跟我们平时接触的中断一样,有相应的中断标志位和中断使能位,我们还可以根据中断类型写相应配套的中断服务程序。

模拟看门狗中断

当被 ADC 转换的模拟电压低于低阈值或者高于高阈值时,就会产生中断,前提是我们开启了模拟看门狗中断,其中低阈值和高阈值由 ADC_LTR 和 ADC_HTR 设置。例如我们设置高阈值是2.5V,那么模拟电压超过 2.5V 的时候,就会产生模拟看门狗中断,反之低阈值也一样。

DMA请求

规则和注入通道转换结束后,除了产生中断外,还可以产生 DMA 请求,把转换好的数据直接存储在内存里面。要注意的是只有 ADC1 和 ADC3 可以产生 DMA 请求。

电压转换

模拟电压经过 ADC 转换后,是一个 12 位的数字值,如果通过串口以 16 进制打印出来的话,可读性比较差,那么有时候我们就需要把数字电压转换成模拟电压,也可以跟实际的模拟电压(用万用表测)对比,看看转换是否准确。
我们一般在设计原理图的时候会把 ADC 的输入电压范围设定在: 0~3.3v,因为 ADC 是 12 位的,那么 12 位满量程对应的就是 3.3V, 12 位满量程对应的数字值是: 2^12。数值 0 对应的就是 0V。如果转换后的数值为 X , X 对应的模拟电压为 Y,那么会有这么一个等式成立: 2^12 / 3.3 = X/ Y, => Y = (3.3 * X ) / 2^12。

ADC 初始化结构体详解

ADC_InitTypeDef 结构体

typedef struct
{
uint32_t Mode; // ADC 工作模式选择
FunctionalState ScanConvMode; /* ADC 扫描(多通道)
或者单次(单通道)模式选择 */
FunctionalState ContinuousConvMode; // ADC 单次转换或者连续转换选择
uint32_t ExternalTrigConv; // ADC 转换触发信号选择
uint32_t DataAlign; // ADC 数据寄存器对齐格式
uint8_t NbrOfChannel; // ADC 采集通道数
} ADC_InitTypeDef;
  • Mode:配置 ADC 的模式,当使用一个 ADC 时是独立模式,使用两个 ADC 时是双模式,在双模式下还有很多细分模式可选,具体配置ADC_CR1:DUALMOD 位。
  • ScanConvMode:可选参数为 ENABLE 和 DISABLE,配置是否使用扫描。如果是单通道 AD 转换使用 DISABLE,如果是多通道 AD 转换使用 ENABLE,具体配置 ADC_CR1:SCAN 位。
  • ContinuousConvMode:可选参数为 ENABLE 和 DISABLE,配置是启动自动连续转换还是单次转换。使用 ENABLE 配置为使能自动连续转换;使用 DISABLE 配置为单次转换,转换一次后停止需要手动控制才重新启动转换,具体配置 ADC_CR2:CON 位。
  • ExternalTrigConv:外部触发选择,图 29‑1 中列举了很多外部触发条件,可根据项目需求配置触发来源。实际上,我们一般使用软件自动触发。
  • DataAlign: 转 换 结 果 数 据 对 齐 模 式, 可 选 右 对 齐 ADC_DataAlign_Right 或 者 左 对 齐ADC_DataAlign_Left。一般我们选择右对齐模式。
  • NbrOfChannel: AD 转换通道数目,根据实际设置即可。具体的通道数和通道的转换顺序是配置规则序列或注入序列寄存器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1643448.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++异常处理实现(libstdc++)

摘要:为了更好的理解C中异常处理的实现,本文简单描述了Itanium ABI中异常处理的流程和llvm/libsdc简要实现。 关键字:C,exception,llvm,clang C他提供了异常处理机制来对程序中的错误进行处理,避免在一些异常情况下无法恢复现场而…

Android C++ 开发调试 LLDB 工具的使用

文章目录 调试环境准备基础命令Breakpoint CommandsWatchpoint CommandsExamining VariablesEvaluating ExpressionsExamining Thread StateExecutable and Shared Library Query Commands 参考: Android 中在进行 NDK 开发的时候,我们经常需要进行 C 代…

漏洞挖掘之某厂商OAuth2.0认证缺陷

0x00 前言 文章中的项目地址统一修改为: a.test.com 保护厂商也保护自己 0x01 OAuth2.0 经常出现的地方 1:网站登录处 2:社交帐号绑定处 0x02 某厂商绑定微博请求包 0x02.1 请求包1: Request: GET https://www.a.test.com/users/auth/weibo?…

88、动态规划-乘积最大子数组

思路: 首先使用递归来解,从0开始到N,每次都从index开始到N的求出最大值。然后再次递归index1到N的最大值,再求max。代码如下: // 方法一:使用递归方式找出最大乘积public static int maxProduct(int[] num…

局部性原理和磁盘预读

局部性原理 磁盘预读 \

Linux---软硬链接

软链接 我们先学习一下怎样创建软链接文件,指令格式为:ln -s 被链接的文件 生成的链接文件名 我们可以这样记忆:ln是link的简称,s是soft的简称。 我们在下面的图片中就是给test文件生成了一个软链接mytest: 我们来解…

【Linux—进程间通信】共享内存的原理、创建及使用

什么是共享内存 共享内存是一种计算机编程中的技术,它允许多个进程访问同一块内存区域,以此作为进程间通信(IPC, Inter-Process Communication)的一种方式。这种方式相对于管道、套接字等通信手段,具有更高的效率&…

【skill】onedrive的烦人问题

Onedrive的迷惑行为 安装Onedrive,如果勾选了同步,会默认把当前用户的数个文件夹(桌面、文档、图片、下载 等等)移动到安装时提示的那个文件夹 查看其中的一个文件的路径: 这样一整,原来的文件收到严重影…

孪生网络、匹配网络和原型网络:详解与区分

孪生网络、匹配网络和原型网络 孪生网络、匹配网络和原型网络:详解与区分孪生网络(Siamese Networks)核心概念工作原理 匹配网络(Matching Networks)核心概念工作原理 原型网络(Prototypical Networks&…

环形链表知识点

目录 判断链表中是否有环快慢指针步数问题 判断链表中是否有环 题目:给你一个链表的头节点 head ,判断链表中是否有环。 解决方法:使用快慢指针 如果两个快慢指针相遇,则有环。 如果没有相遇,则没有环。 但是这个原理…

Linux——守护进程化(独立于用户会话的进程)

目录 前言 一、进程组ID与会话ID 二、setsid() 创建新会话 三、daemon 守护进程 前言 在之前,我们学习过socket编程中的udp通信与tcp通信,但是当时我们服务器启动的时候,都是以前台进程的方式启动的,这样很不优雅&#xff0c…

【LinuxC语言】setitimer与getitimer函数

文章目录 前言一、setitimer() 函数二、getitimer() 函数三、示例代码总结 前言 在Linux系统下,编写程序时经常需要使用定时器来实现一些定时任务、超时处理等功能。setitimer() 和 getitimer() 函数是两个用于操作定时器的重要函数。它们可以帮助我们设置定时器的…

第19章 基于质量特性的测试技术

一、功能性测试 (一)测试方法 等价类边界值法因果图法判定表法场景法 (二)用例 1、正常用例 2、异常用例 (三)完备性 1、功能覆盖率 2、X1-A/B 功能覆盖率X:软件实际功能覆盖文档中所有…

【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解

一、计算机网络的发展背景 1、网络的定义 网络是指将多个计算机或设备通过通信线路、传输协议和网络设备连接起来,形成一个相互通信和共享资源的系统。 (1) 独立模式 独立模式 : 计算机之间相互独立。 (2)…

VMvare如何更改虚拟机内共享文件夹的挂载点

更改虚拟机内共享文件夹的路径 进入目录 /etc/init.d ,并找到vmware-tools文件 里面有配置项 vmhgfs_mnt"/mnt/hgfs" 将引号内的内容更改为你需要挂载的路径,重启即可 注意挂载的路径不能是 “/”,必须根目录下的某个文件夹,或者其子文件夹 …

在线OJ——链表经典例题详解

引言:本篇博客详细讲解了关于链表的三个经典例题,分别是:环形链表(简单),环形链表Ⅱ(中等),随机链表的复制(中等)。当你能毫无压力地听懂和成功地…

面试中算法(使用栈实现队列)

使用栈来模拟一个队列,要求实现队列的两个基本操作:入队、出队。 栈的特点:先入后出,出入元素都是在同一端(栈顶)。 队列的特点:先入先出,出入元素是在两端(队头和队尾)。 分析&…

深度学习:基于Keras,使用长短期记忆神经网络模型LSTM和RMSProp优化算法进行销售预测分析

前言 系列专栏:【机器学习:项目实战100】【2024】✨︎ 在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非…

springboot+vue课程作业成绩可视化大屏分析系统

教师的登录功能。 教师需要可以拥有每学期新增课程的功能。 新增的课程有作业成绩,考勤成绩,考试成绩,实验成绩,其中作业成绩是平时作业1到作业8的平均成绩,最后根据占比得出学期的总评成绩。(参考我发的表…

Shell编程debug

debug调试 debug方法 sh -x显示脚本执行过程set命令设置开始debug和结束debug的位置显示脚本某一部分执行过程,解决复杂脚本故障 示例: sh -x 显示脚本执行过程 set显示脚本的部分执行过程 set -x 开始调试,从这里开始显示脚本的详细执行过…