Educational Codeforces Round 165 (Rated for Div. 2 ABCDE 题)视频讲解

news2024/12/23 15:48:57

A. Two Friends

Problem Statement

Monocarp wants to throw a party. He has n n n friends, and he wants to have at least 2 2 2 of them at his party.

The i i i-th friend’s best friend is p i p_i pi. All p i p_i pi are distinct, and for every i ∈ [ 1 , n ] i \in [1, n] i[1,n], p i ≠ i p_i \ne i pi=i.

Monocarp can send invitations to friends. The i i i-th friend comes to the party if both the i i i-th friend and the p i p_i pi-th friend receive an invitation (note that the p i p_i pi-th friend doesn’t have to actually come to the party). Each invitation is sent to exactly one of the friends.

For example, if p = [ 3 , 1 , 2 , 5 , 4 ] p = [3, 1, 2, 5, 4] p=[3,1,2,5,4], and Monocarp sends invitations to the friends [ 1 , 2 , 4 , 5 ] [1, 2, 4, 5] [1,2,4,5], then the friends [ 2 , 4 , 5 ] [2, 4, 5] [2,4,5] will come to the party. The friend 1 1 1 won’t come since his best friend didn’t receive an invitation; the friend 3 3 3 won’t come since he didn’t receive an invitation.

Calculate the minimum number of invitations Monocarp has to send so that at least 2 2 2 friends come to the party.

Input

The first line contains one integer t t t ( 1 ≤ t ≤ 5000 1 \le t \le 5000 1t5000) — the number of test cases.

Each test case consists of two lines:

  • the first line contains one integer n n n ( 2 ≤ n ≤ 50 2 \le n \le 50 2n50) — the number of friends;
  • the second line contains n n n integers p 1 , p 2 , … , p n p_1, p_2, \dots, p_n p1,p2,,pn ( 1 ≤ p i ≤ n 1 \le p_i \le n 1pin; p i ≠ i p_i \ne i pi=i; all p i p_i pi are distinct).

Output

Print one integer — the minimum number of invitations Monocarp has to send.

Example

Example

input
3
5
3 1 2 5 4
4
2 3 4 1
2
2 1
output
2
3
2

Note

In the first testcase, Monocarp can send invitations to friends 4 4 4 and 5 5 5. Both of them will come to the party since they are each other’s best friends, and both of them have invitations.

In the second testcase, Monocarp can send invitations to friends 1 , 2 1, 2 1,2 and 3 3 3, for example. Then friends 1 1 1 and 2 2 2 will attend: friend 1 1 1 and his best friend 2 2 2 have invitations, friend 2 2 2 and his best friend 3 3 3 have invitations. Friend 3 3 3 won’t attend since his friend 4 4 4 doesn’t have an invitation. It’s impossible to send invitations to fewer than 3 3 3 friends in such a way that at least 2 2 2 come.

In the third testcase, Monocarp can send invitations to both friends 1 1 1 and 2 2 2, and both of them will attend.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve() {
	int n;
	cin >> n;

	std::vector<int> a(n + 1);
	for (int i = 1; i <= n; i ++)
		cin >> a[i];
	for (int i = 1; i <= n; i ++)
		if (i == a[a[i]]) {
			cout << 2 << endl;
			return;
		}
	cout << 3 << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

B. Shifts and Sorting

Problem Statement

Let’s define a cyclic shift of some string s s s as a transformation from s 1 s 2 … s n − 1 s n s_1 s_2 \dots s_{n-1} s_{n} s1s2sn1sn into s n s 1 s 2 … s n − 1 s_{n} s_1 s_2 \dots s_{n-1} sns1s2sn1. In other words, you take one last character s n s_n sn and place it before the first character while moving all other characters to the right.

You are given a binary string s s s (a string consisting of only 0-s and/or 1-s).

In one operation, you can choose any substring s l s l + 1 … s r s_l s_{l+1} \dots s_r slsl+1sr ( 1 ≤ l < r ≤ ∣ s ∣ 1 \le l < r \le |s| 1l<rs) and cyclically shift it. The cost of such operation is equal to r − l + 1 r - l + 1 rl+1 (or the length of the chosen substring).

You can perform the given operation any number of times. What is the minimum total cost to make s s s sorted in non-descending order?

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first and only line of each test case contains a binary string s s s ( 2 ≤ ∣ s ∣ ≤ 2 ⋅ 1 0 5 2 \le |s| \le 2 \cdot 10^5 2s2105; s i ∈ s_i \in si {0, 1}) — the string you need to sort.

Additional constraint on the input: the sum of lengths of strings over all test cases doesn’t exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, print the single integer — the minimum total cost to make string sorted using operation above any number of times.

Example

Example

input
5
10
0000
11000
101011
01101001
output
2
0
9
5
11

Note

In the first test case, you can choose the whole string and perform a cyclic shift: 10 → \rightarrow 01. The length of the substring is 2 2 2, so the cost is 2 2 2.

In the second test case, the string is already sorted, so you don’t need to perform any operations.

In the third test case, one of the optimal strategies is the next:

  1. choose substring [ 1 , 3 ] [1, 3] [1,3]: 11000 → \rightarrow 01100;
  2. choose substring [ 2 , 4 ] [2, 4] [2,4]: 01100 → \rightarrow 00110;
  3. choose substring [ 3 , 5 ] [3, 5] [3,5]: 00110 → \rightarrow 00011.

The total cost is 3 + 3 + 3 = 9 3 + 3 + 3 = 9 3+3+3=9.

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

void solve() {
	string s;
	cin >> s;
	int n = s.size();
	s = ' ' + s;

	int tot = 0, res = 0;
	for (int i = 1; i <= n; i ++) 
		if (s[i] == '1')
			tot ++;
		else {
			if (!tot) continue;
			res += tot + 1;
		}

	cout << res << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

C. Minimizing the Sum

Problem Statement

You are given an integer array a a a of length n n n.

You can perform the following operation: choose an element of the array and replace it with any of its neighbor’s value.

For example, if a = [ 3 , 1 , 2 ] a=[3, 1, 2] a=[3,1,2], you can get one of the arrays [ 3 , 3 , 2 ] [3, 3, 2] [3,3,2], [ 3 , 2 , 2 ] [3, 2, 2] [3,2,2] and [ 1 , 1 , 2 ] [1, 1, 2] [1,1,2] using one operation, but not [ 2 , 1 , 2 [2, 1, 2 [2,1,2] or [ 3 , 4 , 2 ] [3, 4, 2] [3,4,2].

Your task is to calculate the minimum possible total sum of the array if you can perform the aforementioned operation at most k k k times.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and k k k ( 1 ≤ n ≤ 3 ⋅ 1 0 5 1 \le n \le 3 \cdot 10^5 1n3105; 0 ≤ k ≤ 10 0 \le k \le 10 0k10).

The second line contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109).

Additional constraint on the input: the sum of n n n over all test cases doesn’t exceed 3 ⋅ 1 0 5 3 \cdot 10^5 3105.

Output

For each test case, print a single integer — the minimum possible total sum of the array if you can perform the aforementioned operation at most k k k times.

Example

input
4
3 1
3 1 2
1 3
5
4 2
2 2 1 3
6 3
4 1 2 2 4 3
output
4
5
5
10

Note

In the first example, one of the possible sequences of operations is the following: [ 3 , 1 , 2 ] → [ 1 , 1 , 2 [3, 1, 2] \rightarrow [1, 1, 2 [3,1,2][1,1,2].

In the second example, you do not need to apply the operation.

In the third example, one of the possible sequences of operations is the following: [ 2 , 2 , 1 , 3 ] → [ 2 , 1 , 1 , 3 ] → [ 2 , 1 , 1 , 1 ] [2, 2, 1, 3] \rightarrow [2, 1, 1, 3] \rightarrow [2, 1, 1, 1] [2,2,1,3][2,1,1,3][2,1,1,1].

In the fourth example, one of the possible sequences of operations is the following: [ 4 , 1 , 2 , 2 , 4 , 3 ] → [ 1 , 1 , 2 , 2 , 4 , 3 ] → [ 1 , 1 , 1 , 2 , 4 , 3 ] → [ 1 , 1 , 1 , 2 , 2 , 3 ] [4, 1, 2, 2, 4, 3] \rightarrow [1, 1, 2, 2, 4, 3] \rightarrow [1, 1, 1, 2, 4, 3] \rightarrow [1, 1, 1, 2, 2, 3] [4,1,2,2,4,3][1,1,2,2,4,3][1,1,1,2,4,3][1,1,1,2,2,3].

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 3e5 + 20;

int n, k;
int a[N], f[N][20];
int mn[N][20];

void build() {
	int m = log2(n) + 1;
	for (int j = 0; j < m; j ++)
		for (int i = 1; i <= n - (1ll << j) + 1; i ++)
			if (!j) mn[i][j] = a[i] - a[i - 1];
			else mn[i][j] = min(mn[i][j - 1], mn[i + (1ll << j - 1)][j - 1]);
}
int query(int l, int r) {
	int t = log2(r - l + 1);
	return min(mn[l][t], mn[r - (1ll << t) + 1][t]);
}

void solve() {
	cin >> n >> k;

	for (int i = 1; i <= n; i ++)
		cin >> a[i], a[i] += a[i - 1];

	for (int i = 0; i <= n; i ++)
		for (int j = 0; j <= k; j ++)
			f[i][j] = -1e16;
	build();
	f[0][k] = 0;
	for (int i = 1; i <= n; i ++)
		for (int t = 0; t <= k; t ++) {
			f[i][t] = f[i - 1][t];
			for (int j = max(1ll, i - k); j <= i; j ++) {
				if (t + (i - j) <= k)
					f[i][t] = max(f[i][t], f[j - 1][t + (i - j)] + a[i] - a[j - 1] - query(j, i) * (i - j + 1));
			}
		}

	int res = 0;
	for (int i = 0; i <= k; i ++)
		res = max(res, f[n][i]);
	cout << a[n] - res << endl;
	for (int i = 0; i <= n; i ++)
		a[i] = 0;

}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

D. Shop Game

Problem Statement

Alice and Bob are playing a game in the shop. There are n n n items in the shop; each item has two parameters: a i a_i ai (item price for Alice) and b i b_i bi (item price for Bob).

Alice wants to choose a subset (possibly empty) of items and buy them. After that, Bob does the following:

  • if Alice bought less than k k k items, Bob can take all of them for free;
  • otherwise, he will take k k k items for free that Alice bought (Bob chooses which k k k items it will be), and for the rest of the chosen items, Bob will buy them from Alice and pay b i b_i bi for the i i i-th item.

Alice’s profit is equal to ∑ i ∈ S b i − ∑ j ∈ T a j \sum\limits_{i \in S} b_i - \sum\limits_{j \in T} a_j iSbijTaj, where S S S is the set of items Bob buys from Alice, and T T T is the set of items Alice buys from the shop. In other words, Alice’s profit is the difference between the amount Bob pays her and the amount she spends buying the items.

Alice wants to maximize her profit, Bob wants to minimize Alice’s profit. Your task is to calculate Alice’s profit if both Alice and Bob act optimally.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains two integers n n n and k k k ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105; 0 ≤ k ≤ n 0 \le k \le n 0kn).

The second line contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1ai109).

The third line contains n n n integers b 1 , b 2 , … , b n b_1, b_2, \dots, b_n b1,b2,,bn ( 1 ≤ b i ≤ 1 0 9 1 \le b_i \le 10^9 1bi109).

Additional constraint on the input: the sum of n n n over all test cases doesn’t exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

For each test case, print a single integer — Alice’s profit if both Alice and Bob act optimally.

Example

Example

input
4
2 0
2 1
1 2
4 1
1 2 1 4
3 3 2 3
4 2
2 1 1 1
4 2 3 2
6 2
1 3 4 9 1 3
7 6 8 10 6 8
output
1
1
0
7

Note

In the first test case, Alice should buy the 2 2 2-nd item and sell it to Bob, so her profit is 2 − 1 = 1 2 - 1 = 1 21=1.

In the second test case, Alice should buy the 1 1 1-st, the 2 2 2-nd and the 3 3 3-rd item; then Bob takes the 1 1 1-st item for free and pays for the 2 2 2-nd and the 3 3 3-rd item. Alice’s profit is ( 3 + 2 ) − ( 1 + 2 + 1 ) = 1 (3+2) - (1+2+1) = 1 (3+2)(1+2+1)=1. Bob could take 2 2 2-nd item for free instead; this does not change Alice’s profit. Bob won’t take the 3 3 3-rd item for free, since this would lead to a profit of 2 2 2.

Solution

具体见文后视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long long

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5 + 10;

int n, k;
PII item[N], cpy[N];

void solve() {
	cin >> n >> k;

	for (int i = 1; i <= n; i ++)
		cin >> item[i].fi;
	for (int i = 1; i <= n; i ++)
		cin >> item[i].se, cpy[i] = item[i];

	if (!k) {
		int res = 0;
		for (int i = 1; i <= n; i ++)
			res += max(0ll, item[i].se - item[i].fi);
		cout << res << endl;
		return;
	}

	sort(item + 1, item + 1 + n, [&](PII a, PII b) {
		if (a.se == b.se) return a.fi > b.fi;
		return a.se < b.se;
	});
	
	int tot = 0, res = 0, sum = 0;
	for (int i = 1; i <= n; i ++)
		sum += max(0ll, item[i].se - item[i].fi);

	multiset<int> s;
	for (int i = n; i >= n - k + 1; i --) {
		s.insert(item[i].fi), tot += item[i].fi;
		sum -= max(0ll, item[i].se - item[i].fi);
	}
	
	for (int i = n - k; i >= 0; i --) {
		// cout << item[i].se << ":" << sum << " " << tot << "->" << sum - tot << endl;
		res = max(res, sum - tot);
		auto it = s.end();
		it --;
		if (*it > item[i].fi) {
			tot -= *it, s.erase(it), s.insert(item[i].fi), tot += item[i].fi;
		}
		sum -= max(0ll, item[i].se - item[i].fi);
	}

	cout << res << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

E. Unique Array

Problem Statement

You are given an integer array a a a of length n n n. A subarray of a a a is one of its contiguous subsequences (i. e. an array [ a l , a l + 1 , … , a r ] [a_l, a_{l+1}, \dots, a_r] [al,al+1,,ar] for some integers l l l and r r r such that 1 ≤ l < r ≤ n 1 \le l < r \le n 1l<rn). Let’s call a subarray unique if there is an integer that occurs exactly once in the subarray.

You can perform the following operation any number of times (possibly zero): choose an element of the array and replace it with any integer.

Your task is to calculate the minimum number of aforementioned operation in order for all the subarrays of the array a a a to be unique.

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases.

The first line of each test case contains a single integer n n n ( 1 ≤ n ≤ 3 ⋅ 1 0 5 1 \le n \le 3 \cdot 10^5 1n3105).

The second line contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an ( 1 ≤ a i ≤ n 1 \le a_i \le n 1ain).

Additional constraint on the input: the sum of n n n over all test cases doesn’t exceed 3 ⋅ 1 0 5 3 \cdot 10^5 3105.

Output

For each test case, print a single integer — the minimum number of aforementioned operation in order for all the subarrays of the array a a a to be unique.

Example

input
4
3
2 1 2
4
4 4 4 4
5
3 1 2 1 2
5
1 3 2 1 2
output
0
2
1
0

Note

In the second test case, you can replace the 1 1 1-st and the 3 3 3-rd element, for example, like this: [ 3 , 4 , 1 , 4 ] [3, 4, 1, 4] [3,4,1,4].

In the third test case, you can replace the 4 4 4-th element, for example, like this: [ 3 , 1 , 2 , 3 , 2 ] [3, 1, 2, 3, 2] [3,1,2,3,2].

Solution

具体见文后视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 3e5 + 10;

int n;
int a[N], l[N], r[N], p[N];
struct Segment {
	int l, r;
	int mn, len, lazy;
}tr[N << 2];
int q[N], hh, tt, f[N];

void pushup(int u) {
	tr[u].mn = min(tr[u << 1].mn, tr[u << 1 | 1].mn), tr[u].len = 0;
	if (tr[u << 1].mn == tr[u].mn) tr[u].len += tr[u << 1].len;
	if (tr[u << 1 | 1].mn == tr[u].mn) tr[u].len += tr[u << 1 | 1].len;
}

void pushdown(int u) {
	if (tr[u].lazy) {
		tr[u << 1].mn += tr[u].lazy, tr[u << 1].lazy += tr[u].lazy;
		tr[u << 1 | 1].mn += tr[u].lazy, tr[u << 1 | 1].lazy += tr[u].lazy;
		tr[u].lazy = 0;
	}
}

void build(int u, int l, int r) {
	tr[u] = {l, r}, tr[u].len = r - l + 1;
	if (l == r) return;
	int mid = l + r >> 1;
	build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
}

void modify(int u, int l, int r, int d) {
	if (tr[u].l >= l && tr[u].r <= r) {
		tr[u].mn += d, tr[u].lazy += d;
		return;
	}
	pushdown(u);
	int mid = tr[u].l + tr[u].r >> 1;
	if (mid >= l) modify(u << 1, l, r, d);
	if (mid < r) modify(u << 1 | 1, l, r, d);
	pushup(u);
}

int query(int u, int l, int r) {
	if (tr[u].l >= l && tr[u].r <= r) {
		if (tr[u].mn > 0) return tr[u].r - tr[u].l + 1;
		return tr[u].r - tr[u].l + 1 - tr[u].len;
	}

	pushdown(u);
	int mid = tr[u].l + tr[u].r >> 1, res = 0;
	if (mid >= l) res += query(u << 1, l, r);
	if (mid < r) res += query(u << 1 | 1, l, r);
	return res;
}

void solve() {
	cin >> n;

	for (int i = 1; i <= n; i ++) p[i] = 0;
	for (int i = 1; i <= n; i ++)
		cin >> a[i], l[i] = p[a[i]] + 1, p[a[i]] = i;
	for (int i = 1; i <= n; i ++) p[i] = n + 1;
	for (int i = n; i >= 1; i --)
		r[i] = p[a[i]] - 1, p[a[i]] = i;
	// (l[i], i) -> (i, r[i])
	std::vector<array<int, 4>> opr;
	for (int i = 1; i <= n; i ++) {
		opr.push_back({i, l[i], i, 1});
		opr.push_back({r[i] + 1, l[i], i, -1});
	}
	sort(opr.begin(), opr.end());
	build(1, 1, n);

	q[0] = 0, q[ ++ tt] = 1, hh = 0, tt = 0, f[1] = 1;
	int lim = 0;
	for (int i = 1, j = 0; i <= n; i ++) {
		while (j < opr.size() && opr[j][0] == i) {
			modify(1, opr[j][1], opr[j][2], opr[j][3]);
			j ++;
		}
		int l = 1, r = i;
		while (l < r) {
			int mid = l + r + 1 >> 1;
			if (query(1, mid, i) == i - mid + 1) r = mid - 1;
			else l = mid;
		}
		if (query(1, 1, i) == i) p[i] = 0;
		else p[i] = l;
		lim = max(lim, p[i]);
		while (hh <= tt && q[hh] < lim) hh ++;
		f[i + 1] = f[q[hh]] + 1;
		while (hh <= tt && f[q[tt]] > f[i + 1]) tt --;
		q[ ++ tt] = i + 1;
	}
	
	int res = 2e9;
	for (int i = lim; i <= n; i ++)
		res = min(res, f[i]);
	cout << res << endl;
}

signed main() {
	cin.tie(0);
	cout.tie(0);
	ios::sync_with_stdio(0);

	int dt;
	
	cin >> dt;

	while (dt --)
		solve();

	return 0;
}

视频讲解

Educational Codeforces Round 165 (Rated for Div. 2)(A ~ E 题讲解)


最后祝大家早日在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1638935.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一文全面了解 wxWidgets 布局器(Sizers)

目录 Sizers背后的理念 共同特征 最小大小 边框 对齐方式 伸缩因子 使用 Sizer 隐藏控件 wxBoxSizer wxStaticBoxSizer wxGridSizer wxFlexGridSizer 布局器&#xff08;Sizers&#xff09;&#xff0c;由wxWidgets类层次结构中的wxSizer类及其派生类表示&#xff0…

社会信用示范城市信用代码和虚拟变量(1990-2022年)

01、数据介绍 数据名称&#xff1a;社会信用示范城市信用代码和虚拟变量 数据年份&#xff1a;1990-2022年 计算说明&#xff1a; 数据来源&#xff1a; 时间跨度&#xff1a;1990-2023 年 区域范围&#xff1a;上市公司所属城市范围 参考文献&#xff1a; [1]曹雨阳,孔东…

树莓派控制步进电机(下):软件编程

目录 说明 软件编程 树莓派的RPI编程 基本测试程序 参考文献 说明 在上一篇博文中我们介绍了树莓派控制步进电机所需要的硬件连接&#xff0c;本篇博文主要介绍软件编程。这里我们使用的是树莓派4B开发板&#xff0c;步进电机为6线两相步进电机&#xff0c;驱动器采用的是…

【强训笔记】day6

NO.1 思路&#xff1a;因为存的字符串高位存放的是低下标&#xff0c;所以输出的字符串必须先翻转。 代码实现&#xff1a; class Solution { public:string solve(string s, string t) {string ret;int is.size()-1,jt.size()-1;int tmp0;while(i>0||j>0||tmp){if(i&…

【C++】学习笔记——模板

文章目录 三、内存管理4. operator new与operator delete函数5. new 和 delete 的实现原理1. 内置类型2. 自定义类型3. malloc/free和new/delete的区别 四、模板初阶1. 泛型编程模板实例化 未完待续 三、内存管理 4. operator new与operator delete函数 我们之前学到&#xf…

富唯智能案例|双3D相机引导衔架抓取铝型材

随着制造业的快速发展和自动化水平的不断提升&#xff0c;铝型材的自动化抓取和加工成为行业内的一大技术难题。铝型材因其轻便、耐腐蚀、易加工等特点&#xff0c;广泛应用于建筑、汽车、电子等领域。然而&#xff0c;铝型材的形状多样、尺寸不一&#xff0c;以及生产线上的高…

Spring Cloud——LoadBalancer

Spring Cloud——LoadBalancer 一、负载均衡&#xff08;LoadBalance&#xff09;1.LoadBalancer本地负载均衡客户端 VS Nginx服务端负载均衡区别 二、LoadBalancer1.Spring RestTemplate as a LoadBalancer Client2.编码使用DiscoveryClient动态获取所有上线的服务列表3.从默认…

详细分析Java中的脱敏注解(附Demo)

目录 前言1. 基本知识2. 核心逻辑3. Demo4. 模版 前言 对于隐私信息&#xff0c;需要做特殊处理&#xff0c;比如身份证或者手机号等 对于Java的相关知识推荐阅读&#xff1a;java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09; 1. 基本知…

【4/26-4/30】 Arxiv安全类文章速览

4/26 标题: Merchants of Vulnerabilities: How Bug Bounty Programs Benefit Software Vendors 作者: Esther Gal-Or, Muhammad Zia Hydari, Rahul Telang摘要: 软件漏洞允许恶意黑客利用&#xff0c;威胁系统和数据安全。本文研究了激励道德黑客发现并负责任地向软件供应商披…

[PS小技能学习]抠图和切图

详情见视频教程&#xff1a;PS小技巧--抠图与切图 今天我们来学习如何使用PS对表情包合辑进行抠图和裁剪保存 1、首先&#xff0c;将图片导入&#xff0c;双击图层新建一个图层 2、然后点击工具栏的魔棒工具&#xff0c;再点击顶部菜单栏的添加到选区 3、点击图片的空白区域即…

spring boot学习第十八篇:使用clickhouse

1、pom.xml文件内容如下&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://…

目标检测算法YOLOv3简介

YOLOv3由Joseph Redmon等人于2018年提出&#xff0c;论文名为&#xff1a;《YOLOv3: An Incremental Improvement》&#xff0c;论文见&#xff1a;https://arxiv.org/pdf/1804.02767.pdf &#xff0c;项目网页&#xff1a;https://pjreddie.com/darknet/yolo/ 。YOLOv3是对YOL…

我独自升级崛起怎么注册?新手一看就会的注册方法

《我独自升级&#xff1a;ARISE》是网石旗下一款以网漫《我独自升级》IP开发的ARPG&#xff0c;游戏中&#xff0c;玩家会成为漫画主角程肖宇进行战斗&#xff0c;并通过升级使用更多技能和武器&#xff0c;打造出属于自己的战斗风格。同时&#xff0c;游戏中还将体现原作的核心…

2.1 Java全栈开发前端+后端(全栈工程师进阶之路)-前端框架VUE3-基础-初识Vue

Vue概述 早期前后端分离模式 早期的前后端分离开发模式是这样的&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge">&l…

blender(布兰德)下载安装-windows系统安装

1.简单介绍 这些介绍都是一些百科或官网提供的内容&#xff0c;直接搜索对应的信息后即可看到。Blender&#xff08;布兰德&#xff09;是一款永久开源免费的3D创建套件。支持整个3D创作流程&#xff1a;建模、雕刻、骨骼装配、动画、模拟、实时渲染、合成和运动跟踪&#xff…

基于Spring Boot的校园闲置物品交易网站设计与实现

基于Spring Boot的校园闲置物品交易网站设计与实现 开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/idea 系统部分展示 系统功能界面图&#xff0c;在系统首页可以查看…

Java线上CPU内存冲高问题排查步骤

01 引言 作为一名从事Java开发快一年的程序员&#xff0c;在线上经常碰到某个模块的Pod发出CPU与内存告警的问题&#xff0c;而这些问题会导致系统响应缓慢甚至是服务不可用。一般情况下可以通过重启或者调高Pod的资源量或者增加Pod数量暂时解决问题&#xff0c;但这是治标不治…

【C++】拷贝复制:拷贝构造函数的使用

欢迎来到CILMY23的博客 本篇主题为&#xff1a;拷贝复制&#xff1a;拷贝构造函数的使用 博客主页&#xff1a;CILMY23-CSDN博客 个人专栏&#xff1a;Python | C | C语言 | 数据结构与算法 感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 写在前头…

RCE学习(一)

一.知识点 RCE&#xff1a;远程命令/代码执行漏洞&#xff0c;简称为RCE漏洞&#xff0c;可以直接向服务器后台远程注入操作系统的命令或者代码&#xff0c;从而拿到服务器后台的权限。RCE分为远程执行命令&#xff08;执行ping命令&#xff09;和远程代码执行eval 简单来说就…

【数据结构】时间复杂度和空间复杂度解析

数据结构前言&#xff1a; 1. 什么是数据结构 打个比方来说不同的数据就相当于不同的书籍&#xff0c;我们经常在图书馆可以看到不同类别的书籍会被整理放在书架上方便查看存放&#xff0c;数据结构就是一种计算机存储管理数据的方式。 2. 什么是算法 算法就是一系列的计算…