【数据结构6--图】

news2024/12/28 8:05:58

目录

  • 1 图
  • 2 图的定义和基本概念(在简单图范围内)
  • 3 图的类型定义
  • 4 图的存储结构
    • 4.1 邻接矩阵 表示法
    • 4.2 邻接表 表示法
    • 4.3 十字链表 表示法
    • 4.4 邻接多重表 表示法
  • 5 图的遍历
    • 5.1 深度优先搜索-DFS 及 广度优先遍历-BFS
  • 6 图的应用
    • 6.1 最小生成树
      • 6.1.1 克鲁斯卡尔 (Kruskal) 算法
      • 6.1.2 普里姆 (Prim) 算法算法
    • 6.2 最短路径
      • 6.2.1 单源点最短路径(Dijkstra算法)
      • 6.2.2 单源点最短路径(弗洛伊德算法)
    • 6.3 拓扑排序
    • 6.4 AOE--网

学习记录,优先理解原理

1 图

  图是一种比线性表和树更复杂的数据结构,在线性表中,数据元素之间仅有线性关系,每个数据元素只有一个直接前驱和一个直接后继;在 树形结构中,数据元素之间有着明显的层次关系,并且每一层中的数据元素可能和下一层中的多个元素(即其孩子结点)相关,但只能和上一层中一个元素(即其双亲结点)相关; 而在图结构中,结点之间的关系可以是任意的,图中任意两个数据元素之间都可能相关。数据结构中,则应用图论的知识讨论如何在计算机上实现图的操作,因此主要学习图的存储结构,以及若于图的操作的实现。

2 图的定义和基本概念(在简单图范围内)

  图(Graph)是一种数学结构,用于表示对象之间的关系。在图中,通常包含以下元素:一些简单的概念术语就不讨论了,例如:
提醒一点下图是一个图还是4个图?(一个图,千万别说成四个图)

  • (x,y)指由x点到y点,且无方向;也就是(x,y)=(y,x);
  • <x,y>指由x到y,但是有方向;也就是<x,y>!=<y,x>;
  • 什么是顶点?
  • 什么是边?
  • 什么是图?
  • 什么是子图? —就是从一个图中拿走一部分,这部分就是子图,隶属关系
  • 什么是有向图?—只要有一根线带方向就是有向图
  • 什么是完全有向图?—就是图的所有线都有方向(n个顶点就是有${n(n-1)}$条线都有方向)
  • 什么是无向图?—就是没有一根线带方向
  • 什么是完全无向图?—就是图的所有线都没有方向(n个顶点就是有${n(n-1)/2}$条线都无方向)
  • 所以思考一个问题:a,b两个点,如果是无向图,最多是1条线,如果有向图是两条线:很重要:如下图,所以n个顶点,有向图最多n(n-1)条线,无向图最多是有向的一半;
  • 什么是权?—就是一条线的价值(数值)
  • 什么是邻接点?—无向图中挨着的点就是邻接点;
    但是注意在有向图中:如果 A 指向 B,但 B 不指向 A,那么 B 的邻接点是 A,A的邻接点不是B
  • 什么是度?—针对无向图,就是一根节点被插了几条线,注意无向图没有方向;出==入
  • 什么是入度?出度?—针对有向图,就是一个点射出几条线为出度,插入几条线就是入度;

  以上就是一些基本的简单的概念,稍微理解一下就行,下面的就有一些抽象,可以讨论一下

  1. 回路或者环;如下图画出来的就是环,第一个顶点和最后一个顶点相同的路径称为回路或环
  1. 连通、连通分量、连通图;这些针对无向图,首先是连通,连通的意思就是两个节点之间有线,如下图,V1到V2,V1到V5 都叫连通,画线都叫连通:

      知道了连通的意思,那么连通图的意思就是很好理解了,连通图顾名思义任意两个顶点都能连通。

  现在再问一下,下面的是一个图还是三个图,是连通图吗?----一个图----不是连通图

  很多人第一印象就是觉得是三个图,其实不然,图是一个集合,所以是一个图,这些集合中的元素如何区分呢?我们利用连通分量的的概念就能进行区分,连通分量指的是无向图中的极大连通子图,上图中刚好有三个连通分量(每个连通分量都是一个极大连通子图);如下:

  这样就能分成三个好研究的子图;即-连通分量指的是无向图中的极大连通子图

  1. 我们上面谈完无向图中叫连通、连通图、连通分量,那么在有向图中怎么叫呢?我觉得叫有向连通,比较通俗易懂,但是学术名称是强连通图和强连通分量:在有向图 G 中,如果对千每一对Vi,Vj属于 V;从 Vj到Vi都存在路径,则称G是强连通图。有向图中的极大强连通子图称作有向图的强连通分量。例如下图,不是强连通图,但它有两个强连通分量,如图:
  1. 剩下两个概念就是连通图的生成树和有向树和生成森林:
    在这里插入图片描述

3 图的类型定义

  图是一种数据结构,加上一组基本操作,就构成了抽象数据类型。抽象数据类型图的定义如下;还记得之前对于复数的抽象数据类型的定义吗:如下:三部分-数据对象,数据关系,基本操作;

依次类比关于图的抽象数据结构如下:

  基本操作还有很多,这个可以根据自己的需求进行一些基本操作的编写;

4 图的存储结构

  由千图的结构比较复杂,任意两个顶点之间都可能存在联系,因此无法以数据元素在存储区中的物理位置来表示元素之间的关系,即图没有顺序存储结构,但可以借助二维数组来表示元素之间的关系,即邻接矩阵表示法。另一方面,由千图的任意两个顶点间都可能存在关系,因此,用链式存储表示图是很自然的事,图的链式存储有多种,有邻接表、十字链表和邻接多重表,应根据实际需要的不同选择不同的存储结构。

4.1 邻接矩阵 表示法

  邻接表示法如下图所示:

  除了一个用千存储邻接矩阵的二维数组外, 还需要用一个一维数组来存储顶点信息。 创建一个采用邻接矩阵表示法创建无向网:

  这样的存储方式有缺点也有优点,缺点就是矩阵的通病,对于稀疏的图,这样会造成大量的空间浪费;

4.2 邻接表 表示法

  表头是一个数组结构体指针,每个结构体指针指向一个链表,有如下图:
  在邻接表中,对图中每个顶点V; 建立一个单链表,把与 V相邻接的顶点放在这个链表中,邻接表中每个单链表的第一个结点存放有关顶。

  值得注意的是,一个图的邻接矩阵表示是唯一的,但其邻接表表示不唯一,这是因为邻接表表示中,各边表结点的链接次序取决于建立邻接表的算法,以及边的输入次序。

4.3 十字链表 表示法

  十字链表(Orthogonal List)是有向图的另一种链式存储结构,可以看成将有向图的正邻接表和逆邻接表结合起来得到的一种链表。在十字链接结构中,对应于每个顶点有一个结点,对应于有向图中每一条弧也有一个结点,每条弧的弧头结点和弧尾结点都存放在链表中。

  十字链表是为了便于求得图中顶点的度(出度和入度)而提出来的,它是综合邻接表和逆邻接表形式的一种链式存储结构。在十字链表存储结构中,有向图中的顶点的结构如下所示:

  • data:表示顶点的具体数据信息。
  • firstIn:指向以该顶点为弧头的第一个弧节点。
  • firstOut:指向以该顶点为弧尾的第一个弧节点。
      为了表示有向图中所有的顶点,采用一个顶点数组存储每一个结点。弧节点是十字链表存储结构中用于表示有向图中每一条弧的节点。它的结构包含以下几个域:
  • tailVex:表示该弧的弧尾顶点在顶点数组中的位置。
  • headVex:表示该弧的弧头顶点在顶点数组中的位置。
  • nextArc:指向弧头相同的下一条弧。
  • prevArc:指向弧尾相同的下一条弧。
  • info:该弧的信息。
      弧节点通过tailVexheadVex字段与顶点节点相连,形成了有向图的存储结构。通过弧节点的链接关系,可以方便地访问有向图中的弧信息,以及进行与弧相关的操作,如遍历弧、查找弧等。

4.4 邻接多重表 表示法

 待补充、、、、、

5 图的遍历

  和树的遍历类似,图的遍历也是从图的某一项点开始,按照某种方法对图中所有顶点访问且仅访问一次。图的遍历算法是求解图的连通性问题,拓扑排序和关键路径等算法的基础。

5.1 深度优先搜索-DFS 及 广度优先遍历-BFS

  理解这个之前,先理解一下树中的DFS和BFS遍历,其实树中的DFS就是后序遍历,BFS就是层次遍历,如下图:

  现在放到图中,依然是这样,对于图而言,DFS就是一直找到头,到头后开始访问,就类似于树中的后序访问(其中最重要的是回溯的思想),而BFS就是广度优先遍历,要用到队列,核心就是一层一层的进行遍历:如下图:和深度优先搜索类似,广度优先搜索在遍历的过程中也需要一个访问标志数组。回退时判断有没有访问过这个节点

6 图的应用

6.1 最小生成树

  先明白一个问题就是,最小生成树是一颗树,树的各个点都是连通的,N个节点的树有n-1根线,拿无向图而言,而对于一个图而言,其可能是由很多连通图组成的一个大图,但是要组成一棵树,就不能有环的存在,而且整个图是连通的,且其线是n-1条,这样才能生成一颗树,其中每条线对应一个数值,把这些数值相加得到一个整体的值这个值如果最小,那么就是得到了最小的生成树;采用贪婪算法,主要的算法有:克鲁斯卡尔 (Kruskal) 算法和普里姆 (Prim) 算法。

6.1.1 克鲁斯卡尔 (Kruskal) 算法

  这个算法的步骤就是,先把所有的边存储起来,然后把边从小到大进行排序,然后依次把边从小到大放回原图,也称为加边法,并每次进行判断有没有环的生成,如果又环的生成,就放弃这条线,再向下面取线,直到取到n-1条线,就生成了最小生成树。
与普里姆算法相比,克鲁斯卡尔算法更适合千求稀疏网的最小生成树

6.1.2 普里姆 (Prim) 算法算法

  这个算法有点抽象,核心就是找两个集合之间的最短路径,其中一个集合就是已找到的节点,另外一个集合就是未找到的节点集合,找出中间最短的路径,并纳入一个新的节点,也称 加点法,核心原理就是这样,不用判断有没有环:注意:每次选择最小边时, 可能存在多条同样权值的边可选, 此时任选其一即可。
普里姆算法的时间复杂度为 O(n^2), 与网中的边数无关, 因此适用千求稠密网的最小生成树。

6.2 最短路径

  假设一个人不考虑费用和时间,从A到B,要求中转次数最少,那么这就是一个简单图的问题,简化一下,就是求A到B的最短路径,可以采用图的层次遍历也就是BFS算法(广度优先搜索),直到遇到顶点B就停止,其中中转次数就是A到B之间的节点数;
  显然问题还可以进一步的深入,对于旅客而言,他们关心的就是A到B的费用最少,而对于司机而言,他们更关心的是里程和速度,因此要对图中进行一些改变:为了在图上表示有关信息,可对边赋以权,权的值表示两城市间的距离,或途中所需时间,或交通费用等。此时路径长度的度最就不再是路径上边的数目,而是路径上边的权值之和。考虑到交通图的有向性,例如,汽车的上山和下山,轮船的顺水和逆水,所花费的时间或代价就不相同,所以交通网往往是用带权有向网表示。在带权有向网中,习惯上称路径上的第一个顶点为源点(Source), 最后一个顶点为终点(Destination);

6.2.1 单源点最短路径(Dijkstra算法)

  本节将讨论单源点的最短路径问题:给定带权有向图G和源点Vo , 求从Vo到G中其余各顶点的最短路径。迪杰斯特拉(Dijkstra)提出了一个按路径长度递增的次序产生最短路径的算法,
称为迪杰斯特拉算法。
  注意最小生成树不等于Dijkstra算法:两个解决的问题不一样, 一个是求最短的路线, 一个是解决怎么花最小的成本连通所有点不过Dijkstra算法和最小生成树里的Prim算法思路还挺像的, 但要注意Dijkstra算法每次找的是距离源点(比如我视频里的a点)最近的点, 但是Prim算法每次找的是距离正在生成的树最近的点. 有的点可能距离正在生成的树是最近的但是距离源点不是最近的, 所以Dijkstra算法不等于Prim算法, 也不能用来求最小生成树。

6.2.2 单源点最短路径(弗洛伊德算法)

  待补充

6.3 拓扑排序

  一个无环的有向图称作有向无环图( DirectedAcycline Graph), 简称DAG图。有向无环图是描述一项工程或系统的进行过程的有效工具。通常把计划、 施工过程、 生产流程、 程序流程等都当成一个工程。除了很小的工程外,一般的工程都可分为若干个称做活动(Activity)的子工程,而这些子工程之间, 通常受着一定条件的约束, 如其中某些子工程的开始必须在另一些子工程完成之后。

待补充–

6.4 AOE–网

  与AOV-网相对应的是AOE-网 (Activity On Edge) , 即以边表示活动的网。 AOE-网是一个带权的有向无环图, 其中, 顶点表示事件, 弧表示活动, 权表示活动持续的时间。 通常, AOE-网可用来估算工程的完成时间。

待补充–

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1630053.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

黑马面试篇

课程地址&#xff1a;新版Java面试专题视频教程&#xff0c;java八股文面试全套真题深度详解&#xff08;含大厂高频面试真题&#xff09;_哔哩哔哩_bilibili 课程名称&#xff1a;新版Java面试专题视频教程&#xff0c;java八股文面试全套真题深度详解&#xff08;含大厂高频…

类和对象【下】

本节博客主要围绕构造函数、static成员、友元、内部类、匿名对象等待关于“类和对象”这些细节性知识进行收尾&#xff0c;有需要借鉴即可 类和对象_下目录 1.再谈构造函数1.1初始化列表1.2意义 2.static成员2.1概念2.2特性2.3习题 3.友元3.1友元函数概念3.2友元函数的特性 4.内…

物联网应用技术综合实训室解决方案

一、背景 随着物联网技术的快速发展和广泛应用&#xff0c;物联网产业已经成为新的经济增长点&#xff0c;对于推动产业升级、提高社会信息化水平具有重要意义。因此&#xff0c;培养具备物联网技术应用能力的高素质人才成为了迫切需求。 传统的教育模式往往注重理论教学&…

mPEG-VE,Methoxy-PEG-Vitamin E广泛应用于纳米新材料研究以及细胞培养等领域

【试剂详情】 英文名称 mPEG-Vitamin E&#xff0c;mPEG-VE&#xff0c; Methoxy-PEG-Vitamin E&#xff0c;Methoxy-PEG-VE 中文名称 甲氧基-聚乙二醇-维生素E 外观性状 由分子量决定&#xff0c;液体或者固体 分子量 0.4k&#xff0c;0.6k&#xff0c;1k&#xff0c;2…

LeetCode---394周赛

题目列表 3120. 统计特殊字母的数量 I 3121. 统计特殊字母的数量 II 3122. 使矩阵满足条件的最少操作次数 3123. 最短路径中的边 一、统计特殊字母的数量I 分别统计小写字母和大写字母是否出现&#xff0c;然后求交集即可&#xff0c;这里我们可以用数组统计&#xff0c;但…

PotatoPie 4.0 实验教程(30) —— FPGA实现摄像头图像中值滤波

中值滤波是什么&#xff1f; 图像的中值滤波是一种非线性图像滤波方法&#xff0c;它用于去除图像中的椒盐噪声或其他类型的噪声。中值滤波的原理是用每个像素周围的邻域中的中值来替代该像素的值。与均值滤波不同&#xff0c;中值滤波不会受到极端值的影响&#xff0c;因此在处…

pytest教程-27-分布式执行用例插件-pytest-xdist

上一小节我们学习了pytest随机执行用例插件-pytest-random-order&#xff0c;本小节我们讲解一下pytest分布式执行用例插件pytest-xdist。 前言 平常我们手工测试用例非常多时&#xff0c;比如有1千条用例&#xff0c;假设每个用例执行需要1分钟。如果一个测试人员执行需要10…

Bert基础(十八)--Bert实战:NER命名实体识别

1、命名实体识别介绍 1.1 简介 命名实体识别&#xff08;NER&#xff09;是自然语言处理&#xff08;NLP&#xff09;中的一项关键技术&#xff0c;它的目标是从文本中识别出具有特定意义或指代性强的实体&#xff0c;并对这些实体进行分类。这些实体通常包括人名、地名、组织…

【Linux】make 和 makefile

进度条 #pragma once#include <stdio.h>#define NUM 102 #define BODY #define TOP 100 #define RIGHT >extern void processbar(int rate);#include "processBar.h" #include <string.h> #include <unistd.h>const char lable[] "|/-\…

排序试题解析(二)

8.4.3 01.在以下排序算法中&#xff0c;每次从未排序的记录中选取最小关键字的记录&#xff0c;加入已排序记录的 末尾&#xff0c;该排序算法是( A ). A.简单选择排序 B.冒泡排序 C.堆排序 D.直接插入排序 02&#xff0e;简单选择排序算法的比较次数和移动次数分别为( C )。…

苹果可能将OpenAI技术集成至iOS/iPadOS 18

&#x1f989; AI新闻 &#x1f680; 苹果可能将OpenAI技术集成至iOS/iPadOS 18 摘要&#xff1a;苹果正在与OpenAI就将GPT技术部署在iOS/iPadOS 18中进行谈判。这项技术被视为可能增强的Siri功能&#xff0c;即“AI聊天机器人”。除Siri外&#xff0c;新技术还可能改善Spotl…

RFC 6071: IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/96882d1fb67b4383bc77c4dd421f7b

LeetCode 面试题 17.08 —— 马戏团人塔

阅读目录 1. 题目2. 解题思路3. 代码实现 1. 题目 2. 解题思路 首先&#xff0c;我们对人的身高按照从小到大排序&#xff0c;特别注意&#xff0c;对于身高相等的人&#xff0c;要按照体重从高到低排序。这时候&#xff0c;序列已经满足了在上面的人要比下面的人矮一点&#…

Blender面操作

1.细分Subdivide -选择一个面 -右键&#xff0c;细分 -微调&#xff0c;设置切割次数 2.删除 -选择一个或多个面&#xff0c;按X键 -选择要删除的是面&#xff0c;线还是点 3.挤出面Extrude -选择一个面 -Extrude工具 -拖拽手柄&#xff0c;向外挤出 -微调&#xff…

【Linux】基础指令

文章目录 基础指令1. pwd 指令2. cd 指令3. ls 指令4. touch 指令5. mkdir 指令6. rmdir 和 rm 指令7. man 指令8. cp 指令9. mv 指令10. cat 指令11. more 和 less 指令12. head 和 tail 指令13. date 指令14. cal 指令15. find 指令16. grep 指令18. zip 和 unzip 指令19. ta…

科学高效备考AMC8和AMC10竞赛,吃透2000-2024年1850道真题和解析

多做真题&#xff0c;吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一&#xff0c;通过做真题&#xff0c;可以帮助孩子找到真实竞赛的感觉&#xff0c;而且更加贴近比赛的内容&#xff0c;可以通过真题查漏补缺&#xff0c;更有针对性的补齐知识的短板。 AMC8和AMC10…

元宇宙中的DAPP:你了解多少?

元宇宙是什么&#xff1f;这是一个在当今科技圈炙手可热的话题。而在元宇宙中&#xff0c;DAPP起着至关重要的角色&#xff0c;它作为连接现实世界与虚拟世界的桥梁&#xff0c;为未来的数字世界开启了一个全新的篇章。 一、元宇宙&#xff1a;一个虚拟的数字世界 元宇宙是一…

振弦采集仪在岩土工程监测中的误差分析及提高措施探讨振弦

振弦采集仪在岩土工程监测中的误差分析及提高措施探讨 振弦采集仪是岩土工程监测中常用的一种测量设备&#xff0c;广泛应用于地基沉降、岩土体固结、地下水位变化等监测工作中。然而&#xff0c;在实际应用中&#xff0c;振弦采集仪可能存在一些误差&#xff0c;影响监测结果…

vue学习的预备知识为学好vue打好基础

目录 Vue是什么 &#xff1f;如何使用Vue &#xff1f;Vue ApiVue入口apiVue实例apiVue函数api 无构建过程的渐进式增强静态HTMLVue模块化构建工具npmyarnWebpackvue-cliVite Vue是什么 &#xff1f; 文章基于Vue3叙述。 Vue (发音为 /vjuː/&#xff0c;类似 view) 是一款用于…

基于Springboot的考研资讯平台

基于SpringbootVue的考研资讯平台的设计与实现 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringbootMybatis工具&#xff1a;IDEA、Maven、Navicat 系统展示 用户登录 首页 考研资讯 报考指南 资料信息 论坛信息 后台登录 考研资讯管理 学生管理 资…