节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。
基于大家的讨论和大模型实践,我们写了:
《大模型面试宝典》(2024版) 发布!
《大模型实战宝典》(2024版) 发布!
Llama3模型在4月18日公布后,国内开发者对Llama3模型进行了很多训练和适配,除了中文纯文本模型外,多模态版本也陆续在发布中。
考虑到国内用户对Agent场景的需求,社区LLM&AIGC模型微调推理框架SWIFT基于Llama3-8b-instruct原始版本训练了通用中文模型,并保留且适配了中文Agent能力,这是开源社区中率先完整适配中文环境的通用Agent Llama3模型,后续会有更完整的评测报告产出。
使用方式
推荐用户直接使用swift进行推理或部署:
# 安装依赖
pip install ms-swift -U
# 推理
swift infer --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1
# 部署
swift deploy --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1
下面介绍如何使用SWIFT框架训练Llama3中文Agent模型
环境准备
我们使用框架SWIFT进行模型训练,开发者如果希望训练Llama3中文版本可以参考下面的安装方式:
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 安装ms-swift
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
# 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt -U
pip install -r requirements/llm.txt -U
技术交流&资料
技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。
成立了大模型面试和技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。
方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流
通俗易懂讲解大模型系列
-
重磅消息!《大模型面试宝典》(2024版) 正式发布!
-
重磅消息!《大模型实战宝典》(2024版) 正式发布!
-
做大模型也有1年多了,聊聊这段时间的感悟!
-
用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总
-
用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!
-
用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer
-
用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战
-
用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!
-
用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了
-
用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型
-
用通俗易懂的方式讲解:ChatGLM3-6B 部署指南
-
用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了
-
用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统
-
用通俗易懂的方式讲解:Llama2 部署讲解及试用方式
-
用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路
-
用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术
-
用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?
-
用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法
准备
训练使用8卡进行,环境准备完成后,只需要如下命令即可开启训练:
NPROC_PER_NODE=8 \
swift sft \
--model_type llama3-8b-instruct \
--dataset ms-agent-for-agentfabric-default alpaca-en ms-bench ms-agent-for-agentfabric-addition coig-cqia-ruozhiba coig-cqia-zhihu coig-cqia-exam coig-cqia-chinese-traditional coig-cqia-logi-qa coig-cqia-segmentfault coig-cqia-wiki \
--batch_size 2 \
--max_length 2048 \
--use_loss_scale true \
--gradient_accumulation_steps 16 \
--learning_rate 5e-5 \
--use_flash_attn true \
--eval_steps 500 \
--save_steps 500 \
--train_dataset_sample -1 \
--dataset_test_ratio 0.1 \
--val_dataset_sample 10000 \
--num_train_epochs 2 \
--check_dataset_strategy none \
--gradient_checkpointing true \
--weight_decay 0.01 \
--warmup_ratio 0.03 \
--save_total_limit 2 \
--logging_steps 10 \
--sft_type lora \
--lora_target_modules ALL \
--lora_rank 8 \
--lora_alpha 32
为了提高ReACT格式的准确率,我们将部分loss字段的权重提高以保留中文训练中的agent能力表现。
推理效果
该模型具备良好的中文问答能力,示例如下:
通用问答:
逻辑题:
对联:
藏头诗:
古文翻译:
代码能力:
评测
我们使用swift的eval命令对训练模型的前后进行了通用能力评测,结果如下:
英文GSM8K能力下降了8个点左右,经过消融实验我们发现去掉alpaca-en语料会导致GSM8K下降至少十个点以上。
我们在服务部署后,可以在AgentFabric中校验其接口调用效果,以天气查询为例,可以看到:
模型可以按照system要求对查询进行补全。
文生图
图片解释