【配电网故障定位】基于二进制矮猫鼬优化算法的配电网故障定位 33节点配电系统故障定位【Matlab代码#82】

news2025/1/15 16:48:11

文章目录

    • 【`获取资源`请见文章第6节:资源获取】
    • 1. 配电网故障定位
    • 2. 二进制矮猫鼬优化算法
    • 3. 算例展示
    • 4. 部分代码展示
    • 5. 仿真结果展示
    • 6. 资源获取


获取资源请见文章第6节:资源获取】


1. 配电网故障定位

配电系统故障定位,即在配电网络发生故障的时候,利用智能化的设备和系统,对故障点做出快
速、精准的位置锁定。我国早期使用的故障定位技术是利用分段器和重合器完成的,简单且容易实
现。现阶段,考虑到经济性因素,大多使用基于FTU和人工智能算法的定位技术。对配电网系统故障间接定位的方法主要有神经网络算法和人工智能算法。本文运用智能算法对配电系统的故障进行定位,其原理是把拟定的故障位置作为变量,用智能算法对构造的目标函数进行优化计算,最后得出的解即定位的故障位置。

本文采用的是33节点配电系统模型:
在这里插入图片描述

2. 二进制矮猫鼬优化算法

矮猫鼬优化算法(Dwarf Mongoose Optimization Algorithm,DMO)是由Jeffrey O. Agushaka等人于2022年提出的一种群体智能优化算法,其灵感来源于矮猫鼬的群体觅食行为。矮猫鼬通常生活在一个母系社会的家族群体中,主要有觅食、侦察和保姆三种社会职能。矮猫鼬以集体觅食和侦察而闻名,由雌性首领引导种群进行食物源的搜寻。一旦满足保姆交换条件,即当阿尔法组未能寻找到合适的食物时,将交换阿尔法组和保姆组的成员,且阿尔法组同时进行觅食和寻找睡眠丘。但是,该算法的原始版本适用于连续问题,因此不能直接应用于二值问题。因此,学者提出了二进制蝙蝠算法以解决二值优化问题。

二进制矮猫鼬优化算法具有较好的收敛性和全局搜索能力,在求解复杂优化问题时表现出一定的优势,特别是对于多模态和高维度的问题。它已经被应用于许多领域,如工程优化、神经网络训练、数据挖掘等。

3. 算例展示

在这里插入图片描述
在这里插入图片描述

4. 部分代码展示

clc
clear
close all

global y K
SearchAgents_no=30; % 种群数量
Max_iteration=300; % 最大迭代次数
dim=33; % 维度(33节点配电网系统)
lb=0; % 表示非故障位置
ub=1; % 表示该位置故障

y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0];
%% 计算
K=[1 1 1];

[TargetFitness,TargetPosition,Convergence_curve]=BDMO(SearchAgents_no, Max_iteration, dim); % 利用二进制矮猫鼬优化算法进行优化求解

fprintf('\n')
display(['最优值为 : ', num2str(TargetFitness)]);
display(['最优解为 : ', num2str(TargetPosition)]);
[row, col] = find(TargetPosition == 1);
display(['故障位置为 : ', num2str(col)]);

figure
plot(Convergence_curve(2:end),'r')
ylabel('适应度值');
xlabel('迭代次数');
title('BDMO优化曲线');

5. 仿真结果展示

在这里插入图片描述
在这里插入图片描述

6. 资源获取

可以获取完整代码资源。👇👇👇👀名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1609037.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript算数运算符

源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> <b…

mars3d实现禁止地图移动,禁止地图左右平移,但是鼠标可以移动的效果。

new mars3d.layer.GeoJsonLayer({渲染后实现鼠标左键按住不释放拖动时&#xff0c;地图不跟着拖动效果 当前问题&#xff1a; 1.在map初始化&#xff0c;或者是加载效果的时候&#xff0c;整个地球的场景都是一样的。 如果鼠标左键按住不释放&#xff0c;在屏幕上拖动的时候…

软考136-上午题-【软件工程】-风险管理

一、风险管理 般认为软件风险包含两个特性&#xff1a;不确定性、损失。不确定性是指风险可能发生也可能不发生&#xff1b;损失是指如果风险发生&#xff0c;就会产生恶性后果。 在进行风险分析时&#xff0c;重要的是量化每个风险的不确定程度和损失程度。为了实现这一点&a…

Ceph学习 -11.块存储RBD接口

文章目录 RBD接口1.基础知识1.1 基础知识1.2 简单实践1.3 小结 2.镜像管理2.1 基础知识2.2 简单实践2.3 小结 3.镜像实践3.1 基础知识3.2 简单实践3.3 小结 4.容量管理4.1 基础知识4.2 简单实践4.3 小结 5.快照管理5.1 基础知识5.2 简单实践5.3 小结 6.快照分层6.1 基础知识6.2…

基于SSM的平面设计课程在线学习平台系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的平面设计课程在线学习平台系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;…

步步精科技获得发明型专利,提升Type-C连接器行业竞争力

在电子科技日新月异的时代&#xff0c;连接器作为电子设备中不可或缺的一部分&#xff0c;其安全性、稳定性和性能水平直接关系到设备的使用效果和用户体验。深圳市步步精科技有限公司&#xff08;以下简称“步步精科技”&#xff09;一直致力于连接器领域的技术创新和产品研发…

【论文阅读】用于遥感弱监督语义分割的对比标记和标签激活

【论文阅读】用于遥感弱监督语义分割的对比标记和标签激活 文章目录 【论文阅读】用于遥感弱监督语义分割的对比标记和标签激活一、介绍二、联系工作三、方法3.1 对比token学习模块&#xff08;CTLM&#xff09;3.2 Class token对比学习3.3 标签前景激活模块 四、实验结果 Cont…

【论文笔记 | 异步联邦】Asynchronous Federated Optimization

论文信息 Asynchronous Federated Optimization&#xff0c;OPT2020: 12th Annual Workshop on Optimization for Machine Learning&#xff0c;不属于ccfa introduction 背景&#xff1a;联邦学习有三个关键性质 任务激活不频繁&#xff08;比较难以达成条件&#xff09;&…

HarmonyOS开发案例:【首选项】

介绍 本篇Codelab是基于HarmonyOS的首选项能力实现的一个简单示例。实现如下功能&#xff1a; 创建首选项数据文件。将用户输入的水果名称和数量&#xff0c;写入到首选项数据库。读取首选项数据库中的数据。删除首选项数据文件。 最终效果图如下&#xff1a; 相关概念 [首…

网盘——私聊

在私聊这个功能实现中&#xff0c;具体步骤如下&#xff1a; 1、实现步骤&#xff1a; A、客户端A发送私聊信息请求&#xff08;发送的信息包括双方的用户名&#xff0c;聊天信息&#xff09; B、如果双方在线则直接转发给B&#xff0c;不在线则回复私聊失败&#xff0c;对方…

政安晨:【Keras机器学习示例演绎】(四)—— 利用迁移学习进行关键点检测

目录 数据收集 导入 定义超参数 加载数据 可视化数据 准备数据生成器 定义增强变换 创建训练和验证分割 数据生成器调查 模型构建 模型编译和训练 进行预测并将其可视化 更进一步 政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏…

遍历取后端数据推送到地图上,实现图标点标记地图效果

遍历取后端数据推送到地图上&#xff0c;实现图标点标记地图效果 示例链接&#xff1a; 功能示例(Vue版) | Mars3D三维可视化平台 | 火星科技 踩坑注意点&#xff1a; 1. id: 1 是地图底图的id 后台也返回之后 id直接会有冲突 此时图标标记之后无法单击 相关代码&#xff1a…

liqo学习及安装,k8s,kubernetes多集群互联

先按照官方的教程在虚拟机安装学习 在开始以下教程之前&#xff0c;您应该确保您的系统上安装了以下软件&#xff1a; Docker&#xff0c;容器运行时。Kubectl&#xff0c;Kubernetes 的命令行工具。 curl -LO "https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.…

Spark-Scala语言实战(17)

我带着大家一起来到Linux集群环境下&#xff0c;学习我们的spark。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark-Scala语言实战&#xff08;16&#x…

关于MCU核心板的一些常见问题

BGA植球与焊接&#xff08;多涂焊油&#xff09;&#xff1a; 【BGA芯片是真麻烦&#xff0c;主要是植锡珠太麻烦了&#xff0c;拆一次就得重新植】https://www.bilibili.com/video/BV1vW4y1w7oNvd_source3cc3c07b09206097d0d8b0aefdf07958 / NC电容一般有两种含义&#xff1…

js自动缩放页面,html自动缩放页面,大屏自动缩放页面,数字看板自动缩放页面,大数据看板自动缩放页面

js自动缩放页面&#xff0c;html自动缩放页面&#xff0c;大屏自动缩放页面&#xff0c;数字看板自动缩放页面&#xff0c;大数据看板自动缩放页面 由纯JS实现 html代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"…

CSS基础:display的3个常见属性值详解

你好&#xff0c;我是云桃桃。 一个希望帮助更多朋友快速入门 WEB 前端的程序媛。 云桃桃-大专生&#xff0c;一枚程序媛&#xff0c;感谢关注。回复 “前端基础题”&#xff0c;可免费获得前端基础 100 题汇总&#xff0c;回复 “前端工具”&#xff0c;可获取 Web 开发工具…

13-LINUX--消息队列

一.消息队列 1.消息队列&#xff1a;消息队列为一个进程向另一个进程发送一个数据块提供了条件&#xff0c;每个数据块会包含一个类型。 2.相关函数 1>.msgget(key_t key,int msgflg) : 创建消息队列 2>. msgsnd&#xff1a;把消息添加到消息队列 3>.msgrcv &#xf…

【Golang】Gin教学-获取请求信息并返回

安装Gin初始化Gin处理所有HTTP请求获取请求的URL和Method获取请求参数根据Content-Type判断请求数据类型处理JSON数据处理表单数据处理文件返回JSON响应启动服务完整代码测试 Gin是一个用Go&#xff08;又称Golang&#xff09;编写的HTTP Web框架&#xff0c;它具有高性能和简洁…

【React】Sigma.js框架网络图-入门篇

一、介绍 Sigma.js是一个专门用于图形绘制的JavaScript库。 它使在Web页面上发布网络变得容易&#xff0c;并允许开发人员将网络探索集成到丰富的Web应用程序中。 Sigma.js提供了许多内置功能&#xff0c;例如Canvas和WebGL渲染器或鼠标和触摸支持&#xff0c;以使用户在网页上…