深度学习(20)—— ConvNext 使用

news2025/1/8 14:32:54

深度学习(20)—— ConvNext 使用

本篇主要使用convnext做分类任务,其中使用convnext-tiny,其主要有5块

  • stage0
  • stage1
  • stage2
  • stage3
  • head

    文章目录

    • 深度学习(20)—— ConvNext 使用
      • Part 1 Model
      • Part 2 Training
      • Part 3 Predict

Part 1 Model

model.py

# -*- coding: utf-8 -*-
"""
original code from facebook research:
https://github.com/facebookresearch/ConvNeXt
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class LayerNorm(nn.Module):
    r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape), requires_grad=True)
        self.bias = nn.Parameter(torch.zeros(normalized_shape), requires_grad=True)
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise ValueError(f"not support data format '{self.data_format}'")
        self.normalized_shape = (normalized_shape,)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            # [batch_size, channels, height, width]
            mean = x.mean(1, keepdim=True)
            var = (x - mean).pow(2).mean(1, keepdim=True)
            x = (x - mean) / torch.sqrt(var + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x


class Block(nn.Module):
    r""" ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_rate (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
    """

    def __init__(self, dim, drop_rate=0., layer_scale_init_value=1e-6):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_last")
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim,)),
                                  requires_grad=True) if layer_scale_init_value > 0 else None
        self.drop_path = DropPath(drop_rate) if drop_rate > 0. else nn.Identity()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shortcut = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1)  # [N, C, H, W] -> [N, H, W, C]
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # [N, H, W, C] -> [N, C, H, W]

        x = shortcut + self.drop_path(x)
        return x


class MiniConvNext(nn.Module):
    r""" ConvNeXt
            A PyTorch impl of : `A ConvNet for the 2020s`  -
              https://arxiv.org/pdf/2201.03545.pdf
        Args:
            in_chans (int): Number of input image channels. Default: 3
            num_classes (int): Number of classes for classification head. Default: 1000
            depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
            dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
            drop_path_rate (float): Stochastic depth rate. Default: 0.
            layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
            head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
        """

    def __init__(self, in_chans: int = 3, num_classes: int = 1000, depths: list = None,
                 dims: list = None, drop_path_rate: float = 0., layer_scale_init_value: float = 1e-6,
                 head_init_scale: float = 1.):
        super().__init__()
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
                             LayerNorm(dims[0], eps=1e-6, data_format="channels_first"))
        self.downsample_layers.append(stem)

        # ¶ÔÓ¦stage2-stage4Ç°µÄ3¸ödownsample
        for i in range(3):
            downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                                             nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2))
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        # ¹¹½¨Ã¿¸östageÖжѵþµÄblock
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_rate=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value)
                  for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.2)
            nn.init.constant_(m.bias, 0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:

        d_0 = self.downsample_layers[0](x)
        x_0 = self.stages[0](d_0)

        d_1 = self.downsample_layers[1](x_0)
        x_1 = self.stages[1](d_1)

        d_2 = self.downsample_layers[2](x_1)
        x_2 = self.stages[2](d_2)

        d_3 = self.downsample_layers[3](x_2)
        x_3 = self.stages[3](d_3)

        return x_3  #


class ConvNeXt(nn.Module):
    r""" ConvNeXt
        A PyTorch impl of : `A ConvNet for the 2020s`  -
          https://arxiv.org/pdf/2201.03545.pdf
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """

    def __init__(self, in_chans: int = 3, num_classes: int = 1000, depths: list = None,
                 dims: list = None, drop_path_rate: float = 0., layer_scale_init_value: float = 1e-6,
                 head_init_scale: float = 1.):
        super().__init__()
        self.downsample_layers = nn.ModuleList()  # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
                             LayerNorm(dims[0], eps=1e-6, data_format="channels_first"))
        self.downsample_layers.append(stem)

        # ¶ÔÓ¦stage2-stage4Ç°µÄ3¸ödownsample
        for i in range(3):
            downsample_layer = nn.Sequential(LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                                             nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2))
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList()  # 4 feature resolution stages, each consisting of multiple blocks
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
        cur = 0
        # ¹¹½¨Ã¿¸östageÖжѵþµÄblock
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_rate=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value)
                  for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6)  # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)
        self.apply(self._init_weights)
        self.head.weight.data.mul_(head_init_scale)
        self.head.bias.data.mul_(head_init_scale)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.2)
            nn.init.constant_(m.bias, 0)

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)

        return self.norm(x.mean([-2, -1])), x  # global average pooling, (N, C, H, W) -> (N, C)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x, x_original = self.forward_features(x)
        x = self.head(x)
        return x


def convnext_tiny(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth
    model = ConvNeXt(depths=[3, 3, 9, 3],
                     dims=[96, 192, 384, 768],
                     num_classes=num_classes)
    return model


def convnext_small(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[96, 192, 384, 768],
                     num_classes=num_classes)
    return model


def convnext_base(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth
    # https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[128, 256, 512, 1024],
                     num_classes=num_classes)
    return model


def convnext_large(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth
    # https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[192, 384, 768, 1536],
                     num_classes=num_classes)
    return model


def convnext_xlarge(num_classes: int):
    # https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth
    model = ConvNeXt(depths=[3, 3, 27, 3],
                     dims=[256, 512, 1024, 2048],
                     num_classes=num_classes)
    return model
'''

Part 2 Training

  • convnext有很多种规格,一般做分类使用tiny
  • 可以自己写一个dataloader,但是分类任务有一个相对方便的函数datasets.ImageFolder,前提是需要一个这样结构的文件夹- 请添加图片描述
  • convnext-tiny主要有五块组成(一次是stage0,stage1,stage2,stage3,head),使用freeze_layers,第一次学习冻结除了head的全部层,在训练过程中逐层开始解冻

train.py

# -*- coding: utf-8 -*-
"""
Created on Fri Sep  2 15:25:18 2022

@author: Lenovo
"""

import os
import json
import torch
import torch.optim as optim
from pandas.core.frame import DataFrame
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms, datasets
from model import convnext_tiny as create_model # 导入tiny
from utils import get_params_groups, train_one_epoch, evaluate, setup_seed, create_lr_scheduler

global log
log = []
import time

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(f"using {device} device.")
    start_time = time.time()
    start_time = time.strftime("%Y-%m-%d-%H-%M", time.localtime(start_time))

    image_path = '/data/home/yangjy/data/five_class/' # 数据地址,具体格式如上
 #   pretrained_weight = '/home/yangjy/projects/Jane_TF_classification/convnext/weights/convnext_tiny_1k_224_ema.pth'  # 使用convnext在imagenet上的权重作为初始权重
    pretrained_weight = '/home/yangjy/projects/Jane_TF_classification/convnext/weights/2022-12-12-00-29.pth' # 自已之前已将训练过的权重作为初始权重
    weight_path = f"/home/yangjy/projects/Jane_TF_classification/convnext/weights/{start_time}.pth" #训练权重保存位置
    csv_path = f'/home/yangjy/projects/Jane_TF_classification/convnext/results/train/{start_time}.csv'# 用于保存loss和acc的csv地址

    num_classes = 5 # 类别数目,主要用于创建模型时候最后一层全连接层

    batch_size = 64
    freeze_layers = False #将模型冻结一部分还是全部训练

    learning_rate = 1e-4
    weight_decay = 1e-3 
	#学习率衰减
    step_size = 20
    gamma = 0.95
	#早停策略
    early_stop_step = 30
    epochs = 200
    best_acc = 0.5

    data_transform = {
        "train": transforms.Compose([transforms.Resize([224, 224]),
                                     transforms.RandomHorizontalFlip(p=0.5),
                                     transforms.RandomVerticalFlip(p=0.5),
                                     transforms.ColorJitter(0.1, 0.1, 0.1),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize([224, 224]),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
    # 实例化训练数据集
    # 训练加载数据
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)  # 确保图片路径无误
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)
    # 具体分类写入json
    #    {"0": "grade0","1": "grade1","2": "grade2","3": "grade3","4": "grade4"}
    grade_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in grade_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=5)
    with open('./class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    # 转为dataloader型
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=nw)
    # 加载验证数据集
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=False,
                                                  num_workers=nw)
    print("using {} images for training, {} images for validation.".format(train_num, val_num))

    model = create_model(num_classes=num_classes).to(device)
	#其实这里可以使用另外一个变量进行判断,但是我懒就都使用pretrained_weight了,如果pretrained_weight的地址是ImageNet的地址(第一次训练)使用这个作为初始权重
    if pretrained_weight == '/home/yangjy/projects/Jane_TF_classification/convnext/weights/convnext_tiny_1k_224_ema.pth':
        assert os.path.exists(pretrained_weight), "weights file: '{}' not exist.".format(pretrained_weight)
        weights_dict = torch.load(pretrained_weight, map_location=device)["model"]
        # 删除有关分类类别的权重
        for k in list(weights_dict.keys()):
            if "head" in k:
                del weights_dict[k]
        print(model.load_state_dict(weights_dict, strict=False))
        print("Loaded convnext pretrained in ImageNet!")

    elif os.path.exists(pretrained_weight):
        model.load_state_dict(torch.load(pretrained_weight, map_location=device))
        print("Loaded weight pretrained in our data!")
    else:
        print("SORRY!   No pretrained weight!!")
	
    if freeze_layers == True: 
        for name, para in model.named_parameters():
            # 初次训练除head外,其他权重全部冻结,后面逐层(stage3-stage0)解冻
            if ("head" not in name) and ("stages.3" not in name) and ("stages.2" not in name) and ("stages.1" not in name) and ("stages.0" not in name):
                para.requires_grad_(False)
            else:
                print("training {}".format(name))

    # pg = [p for p in model.parameters() if p.requires_grad]
    pg = get_params_groups(model, weight_decay=weight_decay)
    optimizer = optim.AdamW(pg, lr=learning_rate, weight_decay=weight_decay)
    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma)  # 每十次迭代,学习率减半
    #    lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), epochs,warmup=True, warmup_epochs=10)

    # 设置早停
    total_batch = 0
    last_decrease = 0
    min_loss = 1000
    flag = False

    for epoch in range(epochs):
        # train
        train_loss, train_acc = train_one_epoch(model=model,
                                                optimizer=optimizer,
                                                data_loader=train_loader,
                                                device=device,
                                                epoch=epoch, )
        # validate
        val_loss, val_acc = evaluate(model=model,
                                     data_loader=validate_loader,
                                     device=device,
                                     epoch=epoch)
        lr_scheduler.step()

        if val_acc > best_acc:  # acc improve save weight
            best_acc = val_acc
            torch.save(model.state_dict(), weight_path)

        if val_loss < min_loss:  # loss decrease save epoch
            min_loss = val_loss

            last_decrease = total_batch
            print((min_loss, last_decrease))
        total_batch += 1

        if total_batch - last_decrease > early_stop_step:
            print("No optimization for a long time, auto-stopping...")
            flag = True
            break
        log.append([epoch, train_loss, val_loss, train_acc, val_acc])
    print('Finished Training')
    data = DataFrame(data=log, columns=['epoch', 'train_loss', 'val_loss', 'train_acc', 'val_acc'])
    data.to_csv(csv_path)


if __name__ == '__main__':
    main()

注:convnext在训练过程中需要的学习率大,最好不要小于1e-5,我一般初始设为1e-3,完全解冻后设为1e-4。且weight-decay不像resnet设置的较小,convnext的weight-decay一般在5e-2到1e-4,我一般设1e-3

Part 3 Predict

# -*- coding: utf-8 -*-
import json
from PIL import Image
from torchvision import transforms
from model import convnext_tiny as create_model
from pandas.core.frame import DataFrame
from utils import setup_seed
import torch
import os
log = []
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
data_transform = transforms.Compose(
    [transforms.Resize([224, 224]),
     transforms.ToTensor(),
     transforms.Normalize([0.456, 0.485, 0.406], [0.224, 0.229, 0.225])])

num_classes = 5
grade = 'grade4'
img_dir = f'/home/yangjy/data/five_class/val/{grade}' # 图片地址
pretrained_weight_path = '/home/yangjy/projects/Jane_TF_classification/convnext/weights/2022-12-12-00-29.pth' # 权重
save_predict_path = f'/home/yangjy/projects/Jane_TF_classification/convnext/results/predict/{grade}.csv'# 保存结果地址

# read class_indict
json_path = '/home/yangjy/projects/Jane_TF_classification/convnext/code/class_indices.json'
assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
with open(json_path, "r") as f:
    class_indict = json.load(f)

model = create_model(num_classes=num_classes).to(device)
model.load_state_dict(torch.load(pretrained_weight_path,map_location=device))
color_list = os.listdir(img_dir)
for picture in color_list:
    img_path = os.path.join(img_dir, picture)
    try:
        img = Image.open(img_path)
        img = data_transform(img)
        img = torch.unsqueeze(img, dim=0)

        model.eval()
        with torch.no_grad():
            # predict class
            output = torch.squeeze(model(img.to(device))).cpu()
            predict = torch.softmax(output, dim=0)
            predict_cla = torch.argmax(predict).numpy()
        res = [picture, class_indict[str(predict_cla)], grade]
        log.append(res)


    except Exception as e:
        print(e)
        continue

data = DataFrame(data=log, columns=['pic_name', 'predict_result', 'label'])
data.to_csv(save_predict_path)
print('Finished Predicting')




本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/160264.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【数据结构】一篇博客带你实现双向带头循环链表!!!(零基础小白也可以看懂)

目录 0.前言 1. 简述双向带头链表 2.双向带头循环链表的实现 2.1 设计双向带头循环链表结构体 2.2双向带头循环链表的初始化 2.3双向带头循环链表的尾插 2.4双向带头循环链表的尾删 2.5双向带头循环链表的头插 2.6双向带头循环链表的头删 2.7双向带头循环链表的插入 …

【面试题】notify() 和 notifyAll()方法的使用和区别

【面试题】notify() 和 notifyAll()方法的使用和区别 Java中notify和notifyAll的区别 何时在Java中使用notify和notifyAll&#xff1f; 【问】为什么wait()一定要放在循环中&#xff1f; Java中通知和notifyAll方法的示例 Java中通知和notify方法的示例 Java中notify和no…

22年我在CSDN做到了名利兼收

写在前面 hi朋友&#xff0c;我是几何心凉&#xff0c;感谢你能够点开这篇文章&#xff0c;看到这里我觉得我们是有缘分的&#xff0c;因着这份缘分&#xff0c;我希望你能够看完我的分享&#xff0c;因为下面的分享就是要汇报给你听的&#xff0c;这篇文章是在 2022 年 12 月 …

从0到1完成一个Vue后台管理项目(二十三、初代项目完成、已开源)

开源地址 项目地址 项目还在优化&#xff0c;会增加很多新功能&#xff0c;UI也会重新设计&#xff0c;已经在修改啦&#xff01; 最近打算加一些组件、顺便分享一些好用的开源项目 现在正在做迁移到vue3TS的版本、预计年后会完事&#xff0c;然后迁移到vite、遇到的问题和报…

docker安装prometheus和grafana

docker安装prometheus和grafana docker安装prometheus和grafana 概念简述安装prometheus 第一步&#xff1a;确保安装有docker第二步&#xff1a;拉取镜像第三步&#xff1a;准备相关挂载目录及文件第四步&#xff1a;启动容器第五步&#xff1a;访问测试 安装grafana 第一步&…

分享66个ASP源码,总有一款适合您

ASP源码 分享66个ASP源码&#xff0c;总有一款适合您 66个ASP源码下载链接&#xff1a;https://pan.baidu.com/s/1Jf78pfAPaFo6QhHWWHEq0A?pwdwvtg 提取码&#xff1a;wvtg 下面是文件的名字&#xff0c;我放了一些图片&#xff0c;文章里不是所有的图主要是放不下...&…

Docker容器与镜像命令

文章目录帮助命令镜像命令容器命令其它命令命令总结帮助命令 显示 Docker 版本信息 docker version显示 Docker 系统信息&#xff0c;包括镜像和容器数 docker info 帮助 docker --help 镜像命令 列出本地主机上的镜像 docker images运行结果 REPOSITORY TAG …

Python采集彼岸4K高清壁纸

前言 嗨喽&#xff0c;大家好呀~这里是爱看美女的茜茜呐 又到了学Python时刻~ 环境使用: Python 3.8 解释器 Pycharm 编辑器 模块 import re import requests >>> pip install requests ( 更多资料、教程、文档点击此处跳转跳转文末名片加入君羊&#xff0c;找…

【Leetcode面试常见题目题解】5. 最长公共前缀

题目描述 本文是LC第14题&#xff0c;最长公共前缀&#xff0c;题目描述如下&#xff1a; 编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀&#xff0c;返回空字符串 “”。 限制 1 < strs.length < 200 0 < strs[i].length < 200 strs[i] 仅…

数据库 MySQL-window安装和卸载

安装 官网&#xff1a; MySQL :: Download MySQL Community Server 或 MySQL :: Download MySQL Community Server (Archived Versions) 文件目录简述 bin存放了可执行文件&#xff0c;docs是文档&#xff0c;include放的是c语言相关的.h文件&#xff0c;lib是c语言的库文件…

wmv是什么格式?如何录制wmv格式的视频?图文教学

很多小伙伴在使用文件的时候&#xff0c;经常会发现自己的一些文件后缀名是wmv。或者说在工作、学习的过程中&#xff0c;有过被要求使用wmv格式的文件。wmv是什么格式&#xff1f;如何录制wmv格式的视频&#xff1f;今天小编就来详细的跟大家说说。 一、wmv是什么格式&#xf…

SpringBoot复习(一)

底层注解 Configuration 自定义配置类 Bean: 可以通过Bean注解将方法的返回值交给ioc容器来管理 组件id为方法名&#xff0c;组件的类型就是方法的返回类型。 默认组件是单例的 Configuration: 告诉springboot这是一个配置类之前的配置文件 配置类本身也是组件&#xff0c;由s…

【Linux】Makefile/make - 快速理解入门

目录 一、概念理解 1、基本概念 2、举例说明 二、编写 Makefile 1、依赖关系和依赖方法 2、文件清理 3、扩展内容 一、概念理解 1、基本概念 在我们学习 Linux 的过程中&#xff0c;我们可以直接使用 gcc 指令对程序的文本文件逐个进行编译处理&#xff0c;这是因为我…

ASP.NET Core 3.1系列(26)——Autofac中的实例生命周期

1、前言 前面的博客主要介绍了Autofac中的一些注册方法&#xff0c;下面就来介绍一下Autofac中实例的生命周期。之前在介绍ASP.NET Core内置IoC容器的时候说过&#xff0c;实例的生命周期有&#xff1a;瞬时生命周期、域生命周期、全局单例生命周期&#xff0c;而Autofac在这三…

mysql-8.0.31-winx64详细安装教程

一、下载MySQL MySQL官网&#xff1a;https://www.mysql.com/cn/ mysql-8.0.31-winx64下载地址&#xff1a;https://dev.mysql.com/downloads/mysql/ 2、下载结束后&#xff0c;解压到指定目录&#xff0c;笔者存放在D盘 &#xff0c;为求简单&#xff0c;设置目录如下&#…

数据库历史数据年度备份

数据库历史数据年度备份 1、文件说明 matomo_backup.sql 备份库表结构脚本(这个根据自己数据结构准备&#xff0c;对于时间命名的表结构就不要加了&#xff0c;只加非时间命名的表结构) export.sh 数据导出脚本 clean.sh 源数据库历史数据清除脚本 2、需求与思路 需求 对…

怎么把PDF转换成图片?来看看这几个方法吧!

要说我们手机里最多的一种文件格式是什么&#xff1f;那应该就是图片了。相信在智能手机的时代&#xff0c;每个人手机里都会有至少几百上千张照片吧。毕竟有许多的事情我们都希望通过图片、照片的形式来记录下来。所以说如何将其他格式的文件变成图片格式就成了一个不大不小的…

开发那点事(十八)Vue开发PC桌面应用案例

写在前面的话 最近有在研究electron框架&#xff0c;踩了不少坑 &#xff0c;现在把这几天研究的成果分享给大家。 研究成果 vue项目打包成exe可安装程序pc应用版本升级&#xff08;需要配合oss服务器&#xff09; vue应用配置 路由文件base配置为空mode模式为默认的hashv…

智慧门户、信创门户、国产门户、数字化门户,如何构建出七大特色亮点?

作者&#xff1a;郑文平 概述 调研结果显示&#xff0c;世界500强企业100%建设了适合自己的集团门户管理系统&#xff0c;也叫作办公门户或内网门户&#xff0c;并通过统一门户最终提升各自整体的业务管理水平和流转效率&#xff0c;没有建设门户的公司面临如下制约&#xff…

二,Spring IOC以及整合mybatis

0 复习 工厂设计模式 工厂设计模式代替new方式创建对象&#xff0c;目的是解耦合。 Spring做为工厂的使用 applicationContext.xml配置bean标签 如何从工厂中获取对象 //创建工厂 ApplicationContext ctx new ClassPathXmlApplicationContext("classpath:applicationCont…