2013年认证杯SPSSPRO杯数学建模C题(第二阶段)公路运输业对于国内生产总值的影响分析全过程文档及程序

news2024/11/25 21:44:42

2013年认证杯SPSSPRO杯数学建模

C题 公路运输业对于国内生产总值的影响分析

原题再现:

  交通运输作为国民经济的载体,沟通生产和消费,在经济发展中扮演着极其重要的角色。纵观几百年来交通运输与经济发展的相互关系,生产水平越高,就越要求基础结构超前发展。工业化时期的基础结构,已经不允许交通运输滞后。进入现代化社会,经济社会对交通运输的要求本质上就是超前的,交通运输是国民经济的先行官,发展经济,交通先行,是经济发展的内在规律。公路运输是在公路上运送旅客和货物的运输方式,是交通运输系统的组成部分之一,主要承担中短途客货运输。发展公路运输对国内生产总值(GDP)增长的贡献产生于交通建设和客货运输两个阶段,表现为公路运输对国民经济的直接贡献、波及效果、对于相关行业的直接消费以及创造就业机会等几个方面。
  某省的统计部门想通过调查研究的方法估计公路运输业对于 GDP 的影响,通过随机发放问卷,获得了附件 1 中所示的数据,该数据为真实调查得到的原始数据。请参照该数据完成如下问题:
  第二阶段问题:
  问题 3 附件 3 给出了该省主要城市的公路运输统计数据。请建立合理的数学模型,给出未来五年公路运输投资资金在各市的分配比例。
  问题 4 请根据附件 3 给出的数据,对于问题 1 的结果进行修正,详细陈述修正的理由。

整体求解过程概述(摘要)

  本文研究的是关于公路运输业对于国内生产总值影响的问题,通过分析题目所给的数据建立了无量纲标准化模型、指数平滑的时间序列模型、灰色系统模型、曲线拟合模型、聚类分析模型、效益综合模型、改进加权主成分分析法模型、熵权的属性识别模型、误差修正模型、时间序列的单位根检验模型、协整分析模型,利用 MATLAB 软件和 SPSS软件对上述模型进行逐一求解,分别回答了题目所给的所有问题。
  针对问题三,首先利用 SPSS 软件对原始数据填补缺失值和分析异常值,并用无量纲化处理方法对公路运输指标进行分类和标准化。再用指数平滑的时间序列模型、灰色系统模型、曲线拟合投资值变化趋势法分别预测公路运输投资强度,得到未来 5 年公路投资强度分别为:74.7514、74.6070、72.0358、67.2308 和 60.5528。然后用聚类城市等级量化模型对经济效果影响不同的城市进行投资力度分类(其分类效果详见 9 页),进而利用加权主成分分析法求解出各类城市对该省经济效果的贡献值。最后综合各市投资增长率、公路运输投资强度及其经济效果贡献值用熵权分析法求解出未来 5 年各城市公路建设资金投入的具体比例(详见 14 页)。
  针对问题四,为了结合附件所给的数据将公路运输业对 GDP 的影响模型进行合理的修正,首先通过公路投资与国民经济发展指标的相关分析得到一般性相关关系。其次通过 Engle—Granger 两步法分析公路投资与国民经济发展指标的协整过程得出公路投资与国民经济发展之间形成了长期均衡关系。然后利用 Granger 因果关系检验 Engle—Granger 两步法所得结论得出其模型的正确性和精确度。最后得出公路投资额与国民经济发展指标 GDP 之间有着高度的正相关关系。

问题分析:

  根据这个问题的实际背景和现有的抽检数据,首先依据 2007 年到 2011 年公路运输的统计数据对该省 11 个城市的投资情况进行强度分类,再结合历年公路投资的强度变化作预测分析,利用改进的加权主成分析法模型推算出 11 个城市经济效益综合贡献值。从而结合熵权算法模型求解出未来 5 年该省每个城市公路投资比例;最后结合上述问题分析的公路运输对 GDP 的影响模型,利用相关分析以及循环检验更深入的讨论了公路运输业对 GDP 的影响效益。
  问题 1)通过题目所给附件的信息,结合问题的求解进行了合理的等级分类,利用将原始处理进行缺失值和异常值的处理,再根据分类标准进行数据整合。首先通过历年公路投资强度进行逐步预测分析,从而得到未来 5 年该省公路投资强度的变化情况,再根据前 5 年各城市的投资强度,利用 SPSS 软件进行聚类分析,从而得到重投入、较重投入、轻投入和最小投入所代表性的城市,通过改进后的加权主成分析法模型求解出各城市公路运输对经济效益的综合贡献值。最后结合投入增长率、城市经济贡献值和城市建设强度值,利用熵权分析模型求解出未来 5 年各城市公路建设资金投入的具体比例,
  问题 2) 通过对上述公路运输对 GDP 影响模型的分析,结合附件 3 中 2007 年到2011 年公路运输统计的数据进行模型修正。首先结合公路投资强度值和 GDP 的相关数据初步分析出公路运输投资与 GDP 的相关性,再通过公路投资与国民经济协整关系分析及误差修正模型、公路投资额与 GDP 时间序列的单位根检验、公路投资额与 GDP 的协整分析和公路投资额与 GDP 的协整分析一系列步骤深入的分析公路运输对 GDP 的影响,最后结合检验环节更好的证明了上述分析的正确性。

模型假设:

  1.假设本文附件中的缺失值和异常值是由于工作人员的忽视而造成了,而通过处理后的异常和缺失数据与原始数据差异性不大。
  2.假设该省每个城市公路建设投资的强度与城市公路经济贡献效益成正相关。
  3.假设将该省 11 个城市公路投资的强度划分为最低投入、低投入、较高投入和高投入四各等级进行分析。
  4.假设该省公路投资金额用公路投资强度来确定,其中公路里程增加的值与单位面积公路建设资金相乘表示公路投资强度。
  5.假设未来 5 年该省各城市公路投资总强度由 11 个城市公路效益经济综合值、城市建设权重和未来 5 年该省公路投资变化率来决定。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

1. 
x=[0:1:4];
y=[1.654277124 1.728771002 1.776948578 1.839460144 1.859779993];
y1=1.631022+0.175439*x;
plot(x,y,'--',x,y1,'-*');
title('¹预测曲线');
xlabel('时间');
ylabel('预测值');
grid on;
2. 
B=[-287.0063459 1
-515.6540044 1
-773.3170607 1
-1055.69827 1];
B1=[-287.0063459 -515.6540044 -773.3170607 -1055.69827
1 1 1 1];
Y=[54.5320405
59.79178874
69.03973939
72.15086514];
q=inv(B1*B)*B1*Y
3.曲线方程
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
y1=2037.407*(exp(0.0241*x)-exp(0.0241*(x-1)));
plot(x,y,'--',x,y1,'-*');
title('预测曲线图');
xlabel('时间');
ylabel('预测值');
grid on;
4.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
cftool
5.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];
y3=2.064e+005*exp(-0.07529*x) -2.063e+005*exp(-0.07536 *x);
plot(x,y,'--',x,y3,'-o');
grid on;
5.
x=[0:1:4];
y=[44.48556623 54.5320405 59.79178874 69.03973939 72.15086514];

y2=42.29 + 2.449 *cos(x*0.2749) + 32.61*sin(x*0.2749);
plot(x,y,'--',x,y2,'-o');
grid on;
6.
x=[0:1:9];
y7=42.29 + 2.449 *cos(x*0.2749) + 32.61*sin(x*0.2749);
y7
1.
x1=[0.455544275 0.541542453 0.595533854 0.682681875 0.724812977 ];
x2=[0.415468779 0.583256115 0.581482314 0.697288343 0.797434953 ];
x3=[0.489219269 0.515736684 0.583646355 0.661576338 0.749965397];
x4=[0.416962175 0.495571922 0.589116229 0.697595173 0.875468267];
y=[44.48557 54.53204 59.79179 69.03974 72.15087];
X=[ones(length(y),1),x1',x2',x3',x4'];
Y=y';
[b,bint,r,rint,stats]=regress(Y,X);
b,bint,r,rint,stats
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1565581.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

九州金榜家庭教育:关注孩子心理健康,增强亲子沟通

家庭教育现在越来越受重视,尤其孩子心理健康,当下社会,孩子心理健康问题频出,很多地方不时传出孩子轻生的新闻,这就是在教育过程中,沟通出现了严重问题,随着心理变化产生,孩子这时候…

Python(乱学)

字典在转化为其他类型时,会出现是否舍弃value的操作,只有在转化为字符串的时候才不会舍弃value 注释的快捷键是ctrl/ 字符串无法与整数,浮点数,等用加号完成拼接 5不入??? 还有一种格式化的方法…

AI绘画软件有什么用?

人工智能(AI)的应用已经渗透到我们生活的各个角落,其中就包括图像生成。AI绘画软件,是一种基于深度学习技术的创新工具,它能够根据指定的风格、主题或者素材自动创作出新的图片。那么,AI绘画软件具体有什么用呢? 首先&#xff0c…

笔记本电脑外放有声音,插耳机没声音

我的笔记本最近因为微信插耳机没声音,每次电话沟通需求,能把人折磨的要死,我实在不知道是哪个设置出现了问题,如果你也遇到了有的软件插耳机有声音,而换一个软件就没声音,那你可以试试我这个高端的方法 1、…

openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint

文章目录 openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint254.1 功能描述254.2 语法格式254.3 参数说明254.4 示例 openGauss学习笔记-254 openGauss性能调优-使用Plan Hint进行调优-子链接块名的hint 254.1 功能描述 指明子链接块的名称。…

MongoDB 6.1 及以上版本使用配置文件的方式启动报错 Unrecognized option: storage.journal.enabled

如果你使用的 MongoDB 的版本大于等于 6.1,并且在 MongoDB 的配置文件中编写了如下内容 storage:journal:# 启用或禁用持久性日志以确保数据文件保持有效和可恢复# true 启用;false 不启用# 64 位系统默认启用,启用后 MongoDB 可以在宕机后根…

JavaSE:抽象类和接口

目录 一、前言 二、抽象类 (一)抽象类概念 (二)使用抽象类的注意事项 (三)抽象类的作用 三、接口 (一)接口概念 (二)接口语法规则 (三&a…

电商项目环境配置

电商项目 目录 目录 文件 工具资源网盘分享 链接: 1、项目概述 1.1基本概述 1.2后台管理系统 项目展示 1. 3开发模式 1.4技术选型 jwt:状态保持的工具 sequeize:掌握数据库的工具 2、项目初始化 2.1 步骤 安装 vue 脚手架通过 vue …

深入理解Java内存模型及其作用

目录 1.前言 2.为什么要有 Java 内存模型? 2.1 一致性问题 2.2 重排序问题 3.Java 内存模型的定义 4.规范内容 4.1 主内存和工作内存交互规范 4.2 什么是 happens-before 原则? 1.前言 当问到 Java 内存模型的时候,一定要注意&#…

算法沉淀——动态规划篇(子数组系列问题(上))

算法沉淀——动态规划篇(子数组系列问题(上)) 前言一、最大子数组和二、环形子数组的最大和三、乘积最大子数组四、乘积为正数的最长子数组长度 前言 几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都…

机台数据传输共享存在哪些问题?机台数据管控怎么做?

一些金融机构、大型制造业以及晶圆制造厂里面,都会存在大量的机台设备,这些机台会产⽣庞⼤⽽属性不同的数据,这些数据需要定期的进行采集和利用。机台数据在传输分享过程中,会面临各种问题和调整,所以需要做好机台数据…

前端 - 基础 表单标签 - 表单元素 input - type 属性 ( 单选按钮和复选按钮 )

input 标签 type 属性 ,上一篇讲了 输入框 和 密码框 这节看看 单选按钮 和 复选 按钮 目录 单选按钮 : 复选按钮 # 看上图就可以看到 单选按钮 -- radio 和 复选 按钮 -- checkbox 单选按钮 : 所谓单选按钮就是 有时…

设计灵活可扩展的文件系统适配器系统

介绍 文件系统适配器是一个用于抽象不同存储类型之间差异的接口,它提供了统一的方式来访问和操作文件系统中的数据。无论是本地文件系统、云存储还是其他类型的存储,文件系统适配器都能够提供一致的操作接口,使得应用程序可以更容易地与不同…

事件队列事件循环(EventLoop) 宏任务 微任务详解 面试题

事件队列 事件循环 EventLoop 宏任务 微任务详解 一、概念二、宏任务(多个)、微任务(1个)三、Promise 的构造函数四、process.nextTick在事件循环中的处理五、vue nextTick原理 一、概念 event: 事件 loop: 循环,循环…

使用Bitmaps位图实现Redis签到

系列文章目录 文章目录 系列文章目录前言前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 Redis提供了Bitmaps这个“数据类型”可以实现对位的操作: (1) Bitmaps…

整顿编剧市场:程序员提交测试流程的最佳实践

讲动人的故事,写懂人的代码 最近,一部去年推出的国产电视剧在IT圈子里引起了轰动。 引起关注的原因,并非剧中程序员的外形出众,而是她提交代码测试的方式——将写有代码的纸张放入文件夹,然后递给了对面的测试人员。如图1所示。 图1 程序员将写有代码的纸张放入文件夹,并…

Python字符串操作方法一览表

字符串操作 你患得患失太在意从前又太担心将来,有句话说的好昨天是段历史,明天是个谜团而今天是天赐的礼物 像珍惜礼物那样珍惜今天。—— 龟大仙《功夫熊猫3》 1.字符串连接 例子: str1 "Hello" str2 "World" resul…

算法学习17:背包问题(动态规划)

算法学习17:背包问题(动态规划) 文章目录 算法学习17:背包问题(动态规划)前言一、01背包问题:1.朴素版:(二维)2.优化版:(一维&#xf…

DeepBook通过NFT空投预告Token发布

是Sui的第一个原生流动性层,正在推出自己的原生token $DEEP,巩固其作为Sui网络关键金融基础设施的地位。DEEP旨在为在DeFi中提供整体流动性的机构和机构交易者使用DeepBook。DeepBook和DEEP的结合为DeFi应用提供了首要的Web3流动性来源。 DEEP token的关…

人事管理系统的设计与实现|Springboot+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)请假加班招聘考勤

本项目包含可运行源码数据库LW,文末可获取本项目的所有资料。 推荐阅读300套最新项目持续更新中..... 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含ja…