2014年认证杯SPSSPRO杯数学建模B题(第二阶段)位图的处理算法全过程文档及程序

news2024/11/24 7:02:17

2014年认证杯SPSSPRO杯数学建模

B题 位图的处理算法

原题再现:

  图形(或图像)在计算机里主要有两种存储和表示方法。矢量图是使用点、直线或多边形等基于数学方程的几何对象来描述图形,位图则使用像素来描述图像。一般来说,照片等相对杂乱的图像使用位图格式较为合适,矢量图则多用于工程制图、标志、字体等场合。矢量图可以任意放缩,图形不会有任何改变。而位图一旦放大后会产生较为明显的模糊,线条也会出现锯齿边缘等现象。
  第二阶段问题: 位图在放大时,图像质量常会有所下降,如容易产生较为明显的模糊或马赛克等现象(见图2)。请你建立合理的数学模型,来设计一个放大位图的算法,使图像在被放大后仍能尽量保持较好的图像质量。
在这里插入图片描述
在这里插入图片描述

整体求解过程概述(摘要)

  本文针对位图的放大问题,以题中所给的位图为切入点,综合分析了位图各像素点的坐标及其对应的RGB分量,并通过文献的查阅,基于插值图像边缘部分的分辨率对整个图像放大的重要影响,确立了对边缘部分与非边缘部分采取不同插值算法的建模思路,建立了基于Sobel算子改进后的彩色图像边缘检测模、Thiele - Newton插值法图像边缘部分放大模型、图像放大的分片连续模型和图像“质检—去噪—后处理”模型,运用Matlab软件,C++对图像数据进行处理、分析。最后,对整个模型存在的不足与优点进行讨论,提出对原模型的改进和推广。
  针对问题一,首先,使用改进后的适用于彩色图像的Sobel算法对原图像,借助C++程序对图像进行边缘检测,得到边缘像素点及其RGB值。然后,对边缘像素点进行精密的Thiele - Newton二元有理插值,实现边缘区域的放大算法。
  针对问题二,通过对非边缘图像划分区域段,建立段内连续函数,连续段间的延拓将其分为分片连续的曲面。然后,将整个非边缘曲面表示为了二元的分片连续函数,通过像素RGB分量在新坐标系中的映射关系实现非边缘区域的放大算法。
  针对问题三,首先,问题一与问题二中模型所产生两部分区域放大的组合已初步实现了整个图像的高保真放大,但基于对图像清晰度及背景平滑性的考虑,需要对放大后的图像进行进一步处理。使用彩色图像矢量中通滤波进行去噪处理,并利用反锐化掩模法对插值图像的细节进行进一步增强。本文还对模型的误差进行了具体分析;对模型的优化提出了针对性的改进,分析了模型存在优势与不足。最后,我们又对模型进行了多个方向的推广,分析了其在三维图像放大处理与二维图像缩小处理上的应用前景。

问题分析:

  问题一:对彩色图像进行边缘区域检测并对其进行边缘插值。
将问题一拆分为两个部分:第一,改进Sobel算子,对目标彩色图像边缘区域进行检测;第二,对边缘区域像素点进行插值。首先,运用数学软件Matlab对检测目标图像的边缘区域,得到轮廓像素点的坐标及其对应的RGB分量。考虑到Sobel算子对灰度图像边缘检测效果较好,但是对彩色图像边缘检测会出现边缘模糊的现象,影响后续图像处理。因此,根据彩色图像特点,通过计算RGB分量梯度值,改进Sobel边缘检测方法,提升边缘检测效果。其次,在图像边缘区域采取自适应插值算法,运用较小的运算价,以便能够得到更好的放大效果。

  问题二:对图像进行分片处理,确定局部连续区域(非边缘区域)分片为曲面,并对曲面进行插值。经过模型Ⅰ和模型Ⅱ对图像边缘像的检测提取并进行插值放大处理后,我们需要对大量的非边缘图像部分进行放大处理。使用较为普遍的算法如最近邻域法,双线性内插法,三次内插法等方法虽然能够快速生成较为视觉效果较为良好的目的图像,但仍然存在图像中物体边界区域模糊的问题,限制了其在实际生活场合以及专业图像处理场合的应用。基于此,我们采用一种图像的分片连续数学模型,先将图像分片为连续的曲面,再对曲面进行插值,将原始图像用二元分片连续函数表示,进而对非边缘部分进行放大处理。

  问题三:对目标图像进行放大后的质量提升处理。经过对目标图像两部分有针对性地进行不同的插值放大算法后,我们得到了目标图像初步放大后的结果。但为了保证放大后图像的视觉质量,我们需要对放大后的图像进行如下操作:
在这里插入图片描述

模型假设:

  1.假设目标图像水平清晰度较高,图像质量较高。
  2.假设目标图像尺寸较小,像素点数量有限,可以进一步进行图像放大。
  3.假设目标图像可能被噪声污染,存在一定噪点,需要进行去噪处理。
  4.假设对目标图像的像素点进行插值得到的曲线或平面具有一定的光滑性。

论文缩略图:

在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
int _tmain(int argc, _TCHAR* argv[])
{
// TODO: Add your command handler code here
//定义的变量
IplImage* pImage= NULL; // 声明 IplImage 变量
IplImage* pImgSobelgray= NULL;// 声明 IplImage 变量,用于灰度图像 Sobel 变换
IplImage* pImg8u= NULL;// 声明 IplImage 变量,用于图像格式转换
IplImage* pImg8uSmooth= NULL;// 声明 IplImage 变量,用于存储平滑后的图像
IplImage* pImgColor= NULL;// 声明 IplImage 变量,用于 Sobel 变换

IplImage* pImgSobelcolor= NULL;// 声明 IplImage 变量,用于彩色图像 Sobel 变换
IplImage* pImgPlanes[3] = { 0, 0, 0 };
IplImage* pImage = cvLoadImage ( "barbara.png", CV_LOAD_IMAGE_GRAYSCALE );
cvNamedWindow ( "Original Image " , 1 );
cvShowImage ( " Original Image " , img );
//将已读入系统的图像复制一份
//pImage=cvCloneImage( img );
//建立和原始图像一样图像内存区,图像元素的位深度设为 IPL_DEPTH_8U 
//即无符号 8 位整型
pImg8u = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
pImg8uSmooth = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_8U, 1);
//对灰度图像进行 Sobel 变换
//将彩色图像转换为灰度图像
cvCvtColor(pImage, pImg8u, CV_BGR2GRAY);
//对图像进行高斯滤波
cvSmooth( pImg8u, pImg8uSmooth,CV_GAUSSIAN,3,0,0);
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
//因为 cvSobel 函数要求目标图像必须是 16-bit 图像
pImgSobelgray = cvCreateImage(cvGetSize(pImage),IPL_DEPTH_16S, 1);
//计算一阶 x 方向的图像差分,可根据需要设置参数
cvSobel(pImg8uSmooth, pImgSobelgray,0,1,3);
//将图像格式再转换回来,用于显示
 cvConvertScaleAbs(pImgSobelgray,pImg8u,1,0 ) ;
//创建窗口,显示图像
cvvNamedWindow( "Sobel gray Image", 1 ); 
 cvvShowImage( "Sobel gray Image", pImg8u ); 
//对彩色图像进行 Sobel 变换
//建立 3 个图像内存区,分别存储图像 3 个通道,图像元素的位深度设为 IPL_DEPTH_8U
int i;
for( i = 0; i < 3; i++ )
pImgPlanes[i] = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 1 );
//建立一新图像内存区,图像元素的位深度设为 IPL_DEPTH_16S 有符号 16 位整型
pImgSobelcolor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 
IPL_DEPTH_16S, 1 );
//要求输出图像是 16 位有符号的
pImgColor = cvCreateImage( cvSize(pImage ->width, pImage ->height), 8, 3 );
//将彩色图像分成 3 个单通道图像
cvCvtPixToPlane(pImage, pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0 );
for( i = 0; i < 3; i++ )
{
//分别对每通道图像进行 Sobel 变换
cvSobel( pImgPlanes[i], pImgSobelcolor,0,1,3 );
//转化为 8 位的图像
cvConvertScaleAbs(pImgSobelcolor, pImgPlanes[i], 1, 0 ); 
}
//将各通道图像进行合并
cvCvtPlaneToPix( pImgPlanes[0], pImgPlanes[1], pImgPlanes[2], 0, pImgColor);
//创建窗口,显示图像
cvvNamedWindow( "Sobel color Image", 1 ); 
cvvShowImage( "Sobel color Image", pImgColor); 
//等待按键
cvWaitKey(0); 
//销毁窗口
cvDestroyWindow( " Sobel gray Image " );
cvDestroyWindow( " Sobel color Image " );
//将程序开始定义的变量释放
cvReleaseImage( & pImage);
cvReleaseImage( & pImgSobelgray);
cvReleaseImage( & pImgSobelcolor);
cvReleaseImage( & pImg8u);
cvReleaseImage( & pImg8uSmooth);
return 0;
}
I=imread('写入图片存放的位置,后缀.图像格式');
I1=rgb2gray(I);
I2=medfilt2(I1,[m,n]);
%%%I2 就是中值滤波后的图像,medfilt2 是 matlab 中中值滤波函数,直接调用即可,m 和 n
是选取的平滑窗口,一般为 3*3,可以进行调整
要分离的话,可以这样做:
M=imread('D:\ebook\lena.bmp'); %读取 MATLAB 中的名为 cameraman 的图像
subplot(2,2,1)
imshow(M) %显示原始图像
title('original')
P1=imnoise(M,'gaussian',0.02); %加入高斯躁声
subplot(2,2,2)
imshow(P1) %加入高斯躁声后显示图像
title('gaussian noise');
g1=medfilt2(P1(:,:,1));%%红
g2=medfilt2(P1(:,:,2));%%绿
g3=medfilt2(P1(:,:,3));%%蓝
g(:,:,1)=g1;
g(:,:,2)=g2;
g(:,:,3)=g3;
subplot(2,2,3)
imshow(g)
title('medfilter gaussian')
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1553299.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ripro美化】全站美化包WordPress RiPro主题二开美化版sucaihu-childV1.9(功能集成到后台)

使用介绍 1、【宝塔】删除ripro文件&#xff0c;上传最新ripro版本&#xff0c;然后上传压缩包内的ripro里面的对应文件到ripro主题对应内覆盖&#xff08;找到对应路径单个文件去覆盖&#xff09;。 2、然后上传ripro-chlid子主题美化包到/wp-content/themes路径下 3、注意顺…

无需麻烦:电脑如何轻松管理和同步iPhone应用

轻松实现电脑对iPhone应用管理 摘要 本文介绍了如何使用克魔助手工具实现电脑对手机应用的管理操作。通过简单的步骤&#xff0c;用户可以批量操作手机应用、运行应用、查看应用日志以及安装测试IPA包&#xff0c;提高工作效率和方便管理手机应用。 引言 在日常工作中&#…

智慧公厕解决方案打造更加智能的卫生空间

一、智慧公厕方案概述 智慧公厕方案旨在解决现有公厕存在的诸多问题&#xff0c;包括民众用厕困难、环境卫生状况不佳、管理效率低下等方面。针对民众的需求和管理方面的挑战&#xff0c;智慧公厕提供了一套综合解决方案&#xff0c;包括智能导航、环境监测、资源管理等功能&a…

Day46:WEB攻防-注入工具SQLMAPTamper编写指纹修改高权限操作目录架构

目录 数据猜解-库表列数据&字典 权限操作-文件&命令&交互式 提交方法-POST&HEAD&JSON 绕过模块-Tamper脚本-使用&开发 分析拓展-代理&调试&指纹&风险&等级 知识点&#xff1a; 1、注入工具-SQLMAP-常规猜解&字典配置 2、注入…

2024.3.28学习笔记

今日学习韩顺平java0200_韩顺平Java_对象机制练习_哔哩哔哩_bilibili 今日学习p286-p294 继承 继承可以解决代码复用&#xff0c;让我们的编程更加靠近人类思维&#xff0c;当多个类存在相同的属性和方法时&#xff0c;可以从这些类中抽象出父类&#xff0c;在父类中定义这些…

【FedCoin: A Peer-to-Peer Payment System for Federated Learning】

在这篇论文中&#xff0c;我们提出了FedCoin&#xff0c;一个基于区块链的点对点支付系统&#xff0c;专为联邦学习设计&#xff0c;以实现基于Shapley值的实际利润分配。在FedCoin系统中&#xff0c;区块链共识实体负责计算SV&#xff0c;并且新的区块是基于“Shapley证明”&a…

6.2物联网RK3399项目开发实录-驱动开发之GPIO使用(wulianjishu666)

物联网嵌入式开发源码例程&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1B3oqq5QBhN-VmTFt9CI-7A?pwd2ihg ******************************************************************************************* GPIO 使用 简介 GPIO, 全称 General-Purpose Input/…

如何购买阿里云服务器?2024年阿里云服务器购买流程分享

很多新手用户不知道阿里云服务器购买的流程&#xff0c;不清楚该如何选购云服务器配置才能既满足需求又不会掉“坑”里&#xff0c;为此笔者整理了2024年购买阿里云服务器的完整流程&#xff0c;分为通过云服务器ECS产品页下单购买和通过阿里云活动购买云服务器两种最常见的购买…

使用pytorch构建一个初级的无监督的GAN网络模型

在这个系列中将系统的构建GAN及其相关的一些变种模型&#xff0c;来了解GAN的基本原理。本片为此系列的第一篇&#xff0c;实现起来很简单&#xff0c;所以不要期待有很好的效果出来。 第一篇我们搭建一个无监督的可以生成数字 (0-9) 手写图像的 GAN&#xff0c;使用MINIST数据…

3.28作业

#include <iostream> using namespace std; // 构造函数示例 class MyClass { private: int data; public: // 默认构造函数 MyClass() { data 0; } // 带参数的构造函数 MyClass(int value) { data value; } …

【vue核心技术实战精讲】1.9 Vue指令之v-model双向数据绑定

文章目录 前言本节内容1、v-model2、总结v-model 双向的数据绑定双向数据流&#xff08;绑定&#xff09; v-bind 和 v-model 的区别? 3-1、实战 <input>A、 输入框 type"text"示例效果 B、 单选按钮 type"radio"示例效果 C、 复选框 type"che…

|行业洞察·医药|《医药行业年终总结报告:政策篇-143页》

报告各部分的详细解读&#xff1a; 1. 政策概览 政策导读&#xff1a;2023年作为“十四五”发展时期的第三年&#xff0c;国家发布了许多关键性文件&#xff0c;对医药行业的采购、医保、医疗、医药等方面提出了明确的目标和规划。政策发布情况&#xff1a;截至12月19日&…

[LeetCode]516. 最长回文子序列[记忆化搜索解法详解]

最长回文子序列 LeetCode 原题链接 题目 给你一个字符串 s &#xff0c;找出其中最长的回文子序列&#xff0c;并返回该序列的长度。 子序列定义为&#xff1a;不改变剩余字符顺序的情况下&#xff0c;删除某些字符或者不删除任何字符形成的一个序列。 示例 1&#xff1a…

苹果应用商店上架工具的最新趋势与未来发展展望

摘要 移动应用app上架是开发者关注的重要环节&#xff0c;但常常会面临审核不通过等问题。为帮助开发者顺利完成上架工作&#xff0c;各种辅助工具应运而生。本文探讨移动应用app上架原理、常见辅助工具功能及其作用&#xff0c;最终指出合理使用工具的重要性。 引言 移动应…

YonBuilder移动开发基础——友开发App与自定义Loader

概述 在使用 YonBuilder移动开发 技术进行 App 项目开发时&#xff0c;我们需要使用YonStuido开发工具的 WIFI同步 功能进行项目代码的真机调试&#xff0c;友开发App 与 自定义Loader 都支持 WIFI同步 功能&#xff0c;那么两款 App 软件到底有什么区别&#xff0c;在开发过程…

C语言 | qsort()函数使用

目录&#xff1a; 1.qsort介绍 2.使⽤qsort函数 排序 整型数据 3.使⽤qsort函数 排序 结构体数据 4. qsort函数的模拟实现冒泡排序 qsort()函数 是一个 C语言编译器函数库自带的排序函数&#xff0c; 它可以对指定数组&#xff08;包括字符串&#xff0c;二维数组&#x…

STM32CubeMX学习笔记28---FreeRTOS软件定时器

一、软件定时器简介 1 、基本概念 定时器&#xff0c;是指从指定的时刻开始&#xff0c;经过一个指定时间&#xff0c;然后触发一个超时事件&#xff0c;用户 可以自定义定时器的周期与频率。类似生活中的闹钟&#xff0c;我们可以设置闹钟每天什么时候响&#xff0c; 还能设置…

【车体坐标系与世界坐标系的互相转换】能够一眼看懂的知识点!!!

本文讲解车体坐标系与世界坐标系互相转换的数学推导&#xff0c;如下图所示 将waypoint坐标从车体坐标系转换到世界坐标系&#xff1a; [ x ′ y ′ z ′ ] [ x y z ] [ cos ⁡ θ sin ⁡ θ 0 − sin ⁡ θ cos ⁡ θ 0 0 0 1 ] \left[\begin{array}{lll} x^{\prime} & …

产品经理的自我修养

点击下载《产品经理的自我修养》 1. 前言 在产品领域取得成功的关键在于持续的激情。只有保持热情不减,我们才能克服各种困难,打造出卓越的产品。 如果你真心渴望追求产品之路,我强烈建议你立即行动起来,亲自参与实际的产品创作。无论是建立一个网站、创建一个社群,还是…

axios发送get请求但参数中有数组导致请求路径多出了“[]“的处理办法

一、情况 使用axios发送get请求携带了数组参数时&#xff0c;请求路径中就会多出[]字符&#xff0c;而在后端也会报错 二、解决办法 1、安装qs 当前项目的命令行中安装 npm install qs2、引入qs库(使用qs库来将参数对象转换为字符串) // 全局 import qs from qs Vue.proto…