Towhee 小记

news2024/11/18 0:41:58

在这里插入图片描述

文章目录

    • 关于 Towhee
    • ✨ 项目特点
    • 🎓 快速入门
    • 流水线
      • 预定义流水线
      • 自定义流水线
    • 🚀 核心概念


关于 Towhee

Towhee 是一个开源的 embedding 框架,包含丰富的数据处理算法与神经网络模型。通过 Towhee,能够轻松地处理非结构化数据(如图片、视频、音频、长文本等),完成原始数据到向量的转换。

同时,Towhee 也是一个开放的算法与模型交流社区。


Towhee 可以让用户像搭积木一样,轻松地完成 AI 应用程序的构建和落地。通过使用大语言模型(LLM)以及其他SOTA深度学习模型,从各种未加工过的非结构化数据中(长文本、图像、音频和视频)提取信息,并将这些信息存储到合适的存储系统中,比如可以将提取出的向量数据存储到向量数据库中。开发人员能够通过Towhee提供的Pythonic API来完成各种 AI 流水线和 AI 应用的原型设计,享受自动代码优化,低成本实现生产环境的应用性能优化。


  • 官网:https://towhee.io
  • github : https://github.com/towhee-io
  • 中文文档:https://github.com/towhee-io/towhee/blob/main/README_CN.md
  • Slack: https://slack.towhee.io
  • Twitter: https://twitter.com/towheeio

相关文章

  • Towhee,开源的 embedding 框架与社区
    https://mp.weixin.qq.com/s/oRU19zT78LvilUmlwPS5OA

✨ 项目特点

🎨 多模态 Towhee 能够处理各种数据类型。无论是图像数据、视频片段、文本、音频文件还是分子结构,Towhee 都可以处理。

📃 LLM 管道编排 Towhee 具有灵活性,可以适应不同的大语言模型(LLM)。此外,它允许在本地托管开源大模型。此外,Towhee 提供了prompt管理和知识检索等功能,使与这些 LLM 的交互更加高效和有效。

🎓 丰富的算子 Towhee 提供了五个领域内众多最先进的现成模型:计算机视觉、自然语言处理、多模态、音频和医疗领域。拥有超过 140 个模型,如 BERT 和 CLIP,以及丰富的功能,如视频解码、音频切片、帧采样和降维,它有助于高效地搭建数据处理流水线。

🔌 预构建的 ETL 管道 Towhee 提供现成的 ETL(提取、转换、加载)管道用于常见任务,如增强生成检索、文本图像搜索和视频副本检测。这意味着您不需要成为 AI 专家即可使用这些功能构建应用程序。

⚡️ 高性能后端 利用 Triton 推理服务器的计算能力,Towhee 可以使用 TensorRT、Pytorch 和 ONNX 等平台加速 CPU 和 GPU 上的模型服务。此外,您可以用几行代码将 Python 管道转换为高性能的 Docker 容器,实现高效部署和扩展。

🐍 Python 风格的 API Towhee 包含一个 Python 风格的方法链 API,用于描述自定义数据处理流水线。我们还支持模式,这使得处理非结构化数据就像处理表格数据一样简单。


🎓 快速入门

Towhee 需要 Python 3.7 及以上的运行环境,可以通过 pip 来完成快速安装:

pip install towhee towhee.models

流水线

预定义流水线

Towhee 提供了一些预定义流水线,可以帮助用户快速实现一些功能。 目前已经实现的有:

  • 文本embedding
  • 图像embedding
  • 视频去重
  • 基于大语言模型的知识库问答

所有的流水线均能在Towhee Hub上找到,下面是sentence_embedding流水线的使用示例:

from towhee import AutoPipes, AutoConfig
# get the built-in sentence_similarity pipeline
config = AutoConfig.load_config('sentence_embedding')
config.model = 'paraphrase-albert-small-v2'
config.device = 0
sentence_embedding = AutoPipes.pipeline('sentence_embedding', config=config)

# generate embedding for one sentence
embedding = sentence_embedding('how are you?').get()
# batch generate embeddings for multi-sentences
embeddings = sentence_embedding.batch(['how are you?', 'how old are you?'])
embeddings = [e.get() for e in embeddings]

自定义流水线

通过Towhee python API,可以实现自定义的流水线, 下面示例中,我们来创建一个基于 CLIP 的跨模态检索流水线。

from towhee import ops, pipe, DataCollection
# create image embeddings and build index
p = (
    pipe.input('file_name')
    .map('file_name', 'img', ops.image_decode.cv2())
    .map('img', 'vec', ops.image_text_embedding.clip(model_name='clip_vit_base_patch32', modality='image'))
    .map('vec', 'vec', ops.towhee.np_normalize())
    .map(('vec', 'file_name'), (), ops.ann_insert.faiss_index('./faiss', 512))
    .output()
)

for f_name in ['https://raw.githubusercontent.com/towhee-io/towhee/main/assets/dog1.png',
               'https://raw.githubusercontent.com/towhee-io/towhee/main/assets/dog2.png',
               'https://raw.githubusercontent.com/towhee-io/towhee/main/assets/dog3.png']:
    p(f_name)

# Flush faiss data into disk. 
p.flush()
# search image by text
decode = ops.image_decode.cv2('rgb')
p = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.clip(model_name='clip_vit_base_patch32', modality='text'))
    .map('vec', 'vec', ops.towhee.np_normalize())
    # faiss op result format:  [[id, score, [file_name], ...]
    .map('vec', 'row', ops.ann_search.faiss_index('./faiss', 3))
    .map('row', 'images', lambda x: [decode(item[2][0]) for item in x])
    .output('text', 'images')
)

DataCollection(p('puppy Corgi')).show()

在这里插入图片描述


🚀 核心概念

Towhee 由四个主要模块组成:“算子(Operators)”、“流水线(Pipelines)”、“数据处理 API(DataCollection API)”和“执行引擎(Engine)”。

  • 算子(Operator):算子是构成神经网络数据处理水流线(neural data processing pipeline)的“积木块”(基础组件)。这些基础组件按照任务类型进行组织,每种任务类型都具有标准的调用接口。一个算子可以是某种神经网络模型,某种数据处理方法,或是某个 Python 函数。
  • 流水线(Pipeline):流水线是由若干个算子组成的 DAG(有向无环图)。流水线可以实现比单个算子更复杂的功能,诸如特征向量提取、数据标记、跨模态数据理解等。
  • 数据处理 API(DataCollection): DataCollection API 是用于描述流水线的编程接口。提供多种数据转换接口:map, filter, flat_map, concat, window, time_window以及window_all,通过这些接口,可以快速构建复杂的数据处理管道,处理视频,音频,文本,图像等非结构化数据。
  • 执行引擎(Engine): 执行引擎负责实例化流水线、任务调度、资源管理,以及运行期性能优化。面向快速原型构建,Towhee 提供了轻量级的本地执行引擎;面向生产环境需求,Towhee 提供了基于 Nvidia Triton 的高性能执行引擎。

2024-03-27(三)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1550329.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【QT】:基本框架

基本框架 一.创建程序二.初识函数1.main2.Widget.h3.Wight.cpp4.Wight.ui5.文件名.pro 三.生成的中间文件 本系列的Qt均使用Qt Creator进行程序编写。 一.创建程序 二.初识函数 1.main 2.Widget.h 3.Wight.cpp 4.Wight.ui 此时再点击编辑,就看到了ui文件的本体了。…

pt-archiver的实践分享,及为何要用 ob-archiver 归档数据的探讨

作者简介:肖杨,软件开发工程师 在数据密集型业务场景中,数据管理策略是否有效至关重要,它直接关系到系统性能与存储效率的提升。数据归档作为该策略的关键环节,不仅有助于优化数据库性能,还能有效降低存储成…

Android-Handler详解_使用篇

本文我将从Handler是什么、有什么、怎们用、啥原理,四个方面去分析。才疏学浅,如有错误,欢迎指正,多谢。 1.是什么 因为Android系统不允许在子线程访问UI组件,否则就会抛出异常。所以咱们平实用的最多的可能是在子线…

「媒体宣传」如何针对不同行业制定媒体邀约方案

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 针对不同行业制定媒体邀约方案时,需要考虑行业特点、目标受众、媒体偏好以及市场趋势等因素。 一、懂行业 先弄清楚你的行业是啥样,有啥特别之处。 了解行业的热…

【地图构建(1)】占用栅格地图构建Occupancy grid mapping

本文主要参考Probabilistic Robotics《概率机器人》一书。 其他参考: 弗莱堡大学课件 博客 含代码博客 0.引言 位姿已知的地图构建(mapping with known poses)的定义:已知机器人的位姿 x 1 : t x_{1:t} x1:t​和传感器的观测数据 z 1 : t z_{1:t} z1:t…

绝地求生:报告长官!速去领取PUBG7周年礼包及7周年活动攻略【附方法】

奖励都需要长官们绑定全球账号,在游戏个人资料处查看是否有绑定! PUBG七周年礼包详情: 包含7周年快乐甜筒帽 7周年快乐背包(3级) 戴墨镜的幽灵 黑货票券 x30 档案管理员宝箱 x1 钥匙 x1 绑定ID登录,或…

【FIneBI可视化工具的使用】

前言: 💞💞大家好,书生♡,今天主要和大家分享一下可视化的工具FineBI的详细使用,希望对大家有所帮助。感谢大家关注点赞。 💞💞前路漫漫,希望大家坚持下去,不忘初心&…

大型驱动水冷负载电阻、缓冲器、滤波器和快速放电电阻

EAK业界首创双面水冷负载电阻器,独特的设计,用户更方便的串联并联使用,强大的水流带走更多因充放电带来的热量。AlN高可靠性氮化铝基板保证了热膨胀不会影响电阻的工作。 液冷电阻器使用水或离子水作为冷却剂。通过添加乙二醇,可以…

单调栈(C++)

单调栈,即栈中元素是单调递增的或是单调递减的,是一个比较好用的数据结构. 柱状图中最大的矩形 84. 柱状图中最大的矩形 - 力扣(LeetCode) 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。…

【SAP2000】在框架结构中应用分布式面板荷载Applying Distributed Panel Loads to Frame Structures

在框架结构中应用分布式面板荷载 Applying Distributed Panel Loads to Frame Structures 使用"Uniform to Frame"选项,可以简单地将荷载用于更多样化的情况。 With the “Uniform to Frame” option, loads can be easily used for a greater diversity of situat…

【书生·浦语大模型实战营第二期】学习笔记1

1. Introduction 开源llm举例:LLaMA 、Qwen 、Mistral 和Deepseek 大型语言模型的发展包括预训练、监督微调(SFT)和基于人类反馈的强化学习(RLHF)等主要阶段 InternLM2的显著特点 采用分组查询注意力(GQA…

蓝桥杯基础练习汇总详细解析(三)——字母图形、01字符串、闰年判断(详细解题思路、代码实现、Python)

试题 基础练习 字母图形 提交此题 评测记录 资源限制 内存限制:256.0MB C/C时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s 问题描述 利用字母可以组成一些美丽的图形,下面给出了一个例子&#…

web开发发展历程-前端、后端、消息队列、后端架构演进

文章目录 摘要主要内容不同的时代对应不同的技术前端技术的中间阶段-单页面应用前后端分离后端技术演化-云计算平台总体趋势反应式编程 消息队列发展史kafka,rocketmq,pulsar网易后端架构演进架构瓶颈数据库瓶颈服务器瓶颈数据库缓存瓶颈-缓存击穿、雪崩…

Spring Boot:Web开发之三大组件的整合

Spring Boot 前言Spring Boot 整合 ServletSpring Boot 整合 FilterSpring Boot 整合 Listener 前言 在 Web 开发中,Servlet 、Filter 和 Listener 是 Java Web 应用中的三大组件。Servlet 是 Java 代码,通过 Java 的 API 动态的向客户端输出内容。Filt…

7.3*3卷积核生成

1.卷积核 在数字图像处理中的各种边沿检测、滤波、腐蚀膨胀等操作都离不开卷积核的生成。下面介绍如何生成各种3X3的卷积核。为后面的数字图像操作打下基础。   由于图像经过卷积操作后会减少两行两列,因此在生成卷积核的时候一般会对图像进行填充,填充…

day 36 贪心算法 part05● 435. 无重叠区间 ● 763.划分字母区间 ● 56. 合并区间

一遍过。首先把区间按左端点排序,然后右端点有两种情况。 假设是a区间,b区间。。。这样排列的顺序,那么 假设a[1]>b[0],如果a[1]>b[1],就应该以b[1]为准,否则以a[1]为准。 class Solution { public:static bo…

一个基于.NET Core构建的简单、跨平台、模块化的商城系统

前言 今天大姚给大家分享一个基于.NET Core构建的简单、跨平台、模块化、完全开源免费(MIT License)的商城系统:Module Shop。 商城后台管理端功能 商品:分类、品牌、单位、选项(销售属性)、属性、属性模…

人脸68关键点与K210疲劳检测

目录 人脸68关键点检测 检测闭眼睁眼 双眼关键点检测 计算眼睛的闭合程度: 原理: 设置阈值进行判断 实时监测和更新 拓展:通过判断上下眼皮重合程度去判断是否闭眼 检测嘴巴是否闭合 提取嘴唇上下轮廓的关键点 计算嘴唇上下轮廓关键点之间的距…

LangChain入门:2.OpenAPI调用ChatGPT模型

快速入门 本篇文章正式进入LangChain的编码阶段,今天实现的功能是使用OpenAPI调用ChatGPT模型来进行文本问答。 1. 申请OpenAPI的访问令牌 这里介绍两种获取到OpenAPI访问令牌的方式,大家按照自己需求进行选择,之后的文章我会基于第二种选…

政安晨:【深度学习神经网络基础】(二)—— 神经元与层

政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 神经元是深度学习神经网络中的基本单元,模拟了…