LangChain入门:2.OpenAPI调用ChatGPT模型

news2024/11/18 2:31:24

快速入门

本篇文章正式进入LangChain的编码阶段,今天实现的功能是使用OpenAPI调用ChatGPT模型来进行文本问答。

1. 申请OpenAPI的访问令牌

这里介绍两种获取到OpenAPI访问令牌的方式,大家按照自己需求进行选择,之后的文章我会基于第二种选择进行的。

  1. 在OpenAI网站上创建一个API帐户并获取相应的API密钥
  2. 通过GPT-API-free这个项目获取免费的授权

2. 安装openai依赖包

pip install openai

在这里插入图片描述

3. 编写代码

这段代码是使用OpenAI和ChatAnywhere技术实现的,用于与用户进行对话。代码的主要部分是使用OpenAI的API进行自然语言对话。

#首先,导入所需的库并创建一个名为client的OpenAI对象。将api_key替换为你自己的API密钥。
from openai import OpenAI

client = OpenAI(
    api_key='xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',  # 替换为你的API密钥
    base_url='https://api.chatanywhere.tech/v1',
)

# 使用client对象调用models.list()方法以获取可用的模型列表。
print(client.models.list())

# 打印client对象的版本号。
print(client._version)

#使用client对象调用chat.completions.create方法,向GPT-3.5-turbo模型输入两个消息。第一个消息是系统消息,告诉用户“你是一个友好的助手”,第二个消息是一个用户消息,询问“2020年的世界锦标赛谁赢得了?”
response = client.chat.completions.create(
    model="gpt-3.5-turbo",
    temperature=0.6,
    max_tokens=50,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
    ],
)

#打印由GPT-3.5-turbo模型生成的回复消息。
print(response.choices[0].message.content)

4. 运行程序

在这里插入图片描述

结论

通过本文,您已经学会了如何使用OpenAI和ChatAnywhere技术实现通过OpenAPI调用ChatGPT模型模拟与用户进行对话。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1550296.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

政安晨:【深度学习神经网络基础】(二)—— 神经元与层

政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正! 神经元是深度学习神经网络中的基本单元,模拟了…

淘宝详情数据采集(商品上货,数据分析,属性详情,价格监控),海量数据值得get

淘宝详情数据采集涉及多个环节,包括商品上货、数据分析、属性详情以及价格监控等。在采集这些数据时,尤其是面对海量数据时,需要采取有效的方法和技术来确保数据的准确性和完整性。以下是一些关于淘宝详情数据采集的建议: 请求示…

DevSecOps平台架构系列-互联网企业私有化DevSecOps平台典型架构

目录 一、概述 二、私有化DevSecOps平台建设思路 2.1 采用GitOps公有云建设 2.2 采用GitOps私有云建设 2.3 总结 三、GitOps及其生态组件 3.1 采用GitOps的好处 3.1.1 周边生态系统齐全 3.1.2 便于自动化的实现 3.1.3 开发人员属性GitOps 3.2 GitOps部分生态组件介绍…

红黑树的Java实现

红黑树的Java实现 文章目录 红黑树的Java实现一、概述二、添加元素三、删除元素四、完整代码总结 一、概述 红黑树也是一种二叉平衡搜索树,向比与AVL树,是一种弱平衡树。因为AVL树是通过平衡因子,左右树的高度相差不能大于1来保证平衡&#…

实测梳理一下kafka分区分组的作用

清空topickafka-topics.sh --bootstrap-server localhost:9092 --delete --topic second创建分区kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 3 --topic second发kafka-console-producer.sh --bootstrap-server localhos…

ospf实验

基础配置 如上图所示,按照上图所示的配置,俩个路由器之间按照12.12.12.X/30网段配置,左端的路由器和交换机之间按照192.168.1.X网段配置,右端的路由器和交换机之间按照192.168.2.X网段配置,下面的两个pc机按照所对应的…

Java 学习和实践笔记(48):怎样用二维数组来存储表格数据?

怎样用数组的方式,来存储下面这个表格的数据? 示例代码如下: import java.util.Arrays;public class Test001 {public static void main(String[] args) {/*object类对象是类层次结构的根。每个类都有Object作为超类。所有对象,包…

使用llamafile 构建本地大模型运用

安装 https://github.com/Mozilla-Ocho/llamafile 下载 大模型文件,选择列表中任意一个 wget https://huggingface.co/jartine/llava-v1.5-7B-GGUF/resolve/main/llava-v1.5-7b-q4.llamafile?downloadtrue https://github.com/Mozilla-Ocho/llamafile?tabre…

软件部署资源计算工具:精确评估资源需求

软件部署资源计算工具:精确评估资源需求 在当今快速发展的信息技术时代,软件部署已成为企业运营不可或缺的一部分。然而,一个常见的挑战是如何精确评估软件部署所需的资源。资源评估不仅关系到软件的性能和稳定性,还直接影响到成…

区块链食品溯源案例实现(二)

引言 随着前端界面的完成,我们接下来需要编写后端代码来与区块链网络进行交互。后端将负责处理前端发送的请求,调用智能合约的方法获取食品溯源信息,并将结果返回给前端。 通过前后端的整合,我们可以构建一个食品溯源系统&#xf…

【第三方登录】Twitter

创建应用 APPID 和 相关回调配置 重新设置api key 和 api secret 设置回调和网址 还有 APP的类型 拿到ClientID 和 Client Secret 源码实现 获取Twitter 的登录地址 public function twitterUrl() {global $db,$request,$comId;require "inc/twitter_client/twitte…

2018年亚马逊云科技推出基于Arm的定制芯片实例

2018年,亚马逊云技术推出了基于Arm的定制芯片。 据相关数据显示,基于Arm的性价比比基于x86的同类实例高出40%。 这打破了对 x86 的依赖,开创了架构的新时代,现在能够支持多种配置的密集计算任务。 这些举措为亚马逊云技术的其他创…

《数据结构学习笔记---第三篇》---单链表具体实现

目录 1.链表 1.1 链表的概念及结构 2.不带头单链表的实现 2.1创建头文件“SList.h” 2.2 创建具体接口实现文件SList.c 2.2.1打印 2.2.2申请链表结点 2.2.3创建一个长度为n的链表 2.2.4尾插尾删 2.2.5头插头删 2.2.6寻找x元素,返回pos 2.2.7插入和删除pos…

基于模糊控制算法的倒立摆控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 对倒立摆模型进行模糊控制器simulink建模,利用倒立摆的摆角角度与小车的位置来控制小车的推力,控制了倒立摆的摆角问题,使得小车最终停在稳…

【Linux】Ubuntu20.04解决网卡、显卡驱动不正确的问题

文章目录 1、概述2、问题描述2.1、快捷栏无无线设置2.2、设置中无Wifi设置专栏2.3、接入外接屏幕无作用 3、网卡驱动解决方案3.1、在18.04的旧方法3.1.1、安装源更换3.1.1.1、备份原始安装源3.1.1.2、修改安装源地址3.1.1.3、更新源地址 3.1.2、安装依赖3.1.3、安装编译器3.1.3…

大模型精准度提升调研

如何让ChatGPT更靠谱 1. 预训练大模型概述 关于预训练 预训练(Pre-training)是深度学习中一种常见的技术,特别是在自然语言处理(NLP)和计算机视觉(CV)等领域中。它通常指在一个大型的、通常是…

智能小程序有哪些重要能力?

概念 小程序能力是模块化的,它以kit的形式提供给业务(开发者)。通过kit可以实现快速接入涂鸦生态,获得互联互通的能力。 能力分包 能力分类包名基础能力BaseKit小程序容器能力MiniKit涂鸦内部基础能力以及细粒度通用业务能力Biz…

服务器监控软件夜莺采集监控(三)

文章目录 一、采集器插件1. exec插件2. rabbitmq插件3. elasticsearch插件 二、监控仪表盘1. 系统信息2. 数据服务3. NginxMQ4. Docker5. 业务日志 一、采集器插件 1. exec插件 input.exec/exec.toml [[instances]] commands ["/home/monitor/categraf/scripts/*.sh&q…

区块链食品溯源案例实现(一)

引言: 食品安全问题一直是社会关注的热点,而食品溯源作为解决食品安全问题的重要手段,其重要性不言而喻。传统的食品溯源系统往往存在数据易被篡改、信息不透明等问题,而区块链技术的引入,为食品溯源带来了革命性的变革…

第十篇【传奇开心果系列】Python自动化办公库技术点案例示例:深度解读Python自动化操作Excel

传奇开心果博文系列 系列博文目录Python自动化办公库技术点案例示例系列博文目录 前言一、重要作用解说二、Python操作Excel的常用库介绍三、数据处理和分析示例代码四、自动化报表生成示例代码五、数据导入和导出示例代码六、数据可视化示例代码八、数据校验和清洗示例代码九、…