阿里云-零基础入门NLP【基于深度学习的文本分类3-BERT】

news2025/1/14 0:43:28

文章目录

  • 学习过程
  • 赛题理解
  • 学习目标
  • 赛题数据
  • 数据标签
  • 评测指标
  • 解题思路
  • BERT
    • 代码


学习过程

20年当时自身功底是比较零基础(会写些基础的Python[三个科学计算包]数据分析),一开始看这块其实挺懵的,不会就去问百度或其他人,当时遇见困难挺害怕的,但22后面开始力扣题【目前已刷好几轮,博客没写力扣文章之前,力扣排名靠前已刷有5遍左右,排名靠后刷3次左右,代码功底也在一步一步提升】不断地刷、遇见代码不懂的代码,也开始去打印print去理解,到后面问其他人的问题越来越少,个人自主学习、自主解决能力也得到了进一步增强。

赛题理解

  • 赛题名称:零基础入门NLP之新闻文本分类
  • 赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。
  • 赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。

学习目标

  • 理解赛题背景与赛题数据
  • 完成赛题报名和数据下载,理解赛题的解题思路

赛题数据

赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。

赛题数据由以下几个部分构成:训练集20w条样本,测试集A包括5w条样本,测试集B包括5w条样本。为了预防选手人工标注测试集的情况,我们将比赛数据的文本按照字符级别进行了匿名处理。

数据标签

处理后的赛题训练数据如下:
Image
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}

评测指标

评价标准为类别f1_score的均值,选手提交结果与实际测试集的类别进行对比,结果越大越好。

解题思路

赛题思路分析:赛题本质是一个文本分类问题,需要根据每句的字符进行分类。但赛题给出的数据是匿名化的,不能直接使用中文分词等操作,这个是赛题的难点。

因此本次赛题的难点是需要对匿名字符进行建模,进而完成文本分类的过程。由于文本数据是一种典型的非结构化数据,因此可能涉及到特征提取和分类模型两个部分。为了减低参赛难度,我们提供了一些解题思路供大家参考:

思路1:TF-IDF + 机器学习分类器
直接使用TF-IDF对文本提取特征,并使用分类器进行分类。在分类器的选择上,可以使用SVM、LR、或者XGBoost。

思路2:FastText
FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建出分类器。

思路3:WordVec + 深度学习分类器
WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRNN或者BiLSTM。

思路4:Bert词向量
Bert是高配款的词向量,具有强大的建模学习能力。

这里使用思路1(TF-IDF + 机器学习分类器) 及 思路4(Bert词向量)

BERT

微调将最后一层的第一个token即[CLS]的隐藏向量作为句子的表示,然后输入到softmax层进行分类。

预训练BERT以及相关代码下载地址:链接: https://pan.baidu.com/s/1zd6wN7elGgp1NyuzYKpvGQ 提取码: tmp5

在原基础上,更改了不少参数,目前调试后该参数效果在原基础上是最佳的

代码

print("程序开始")
import logging
import random

import numpy as np
import torch

logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')

# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)

# set cuda
gpu = 0
use_cuda = gpu >= 0 and torch.cuda.is_available()
if use_cuda:
    torch.cuda.set_device(gpu)
    device = torch.device("cuda", gpu)
else:
    device = torch.device("cpu")
logging.info("Use cuda: %s, gpu id: %d.", use_cuda, gpu)




print("开始split data to 20 fold")
# split data to 20 fold
fold_num = 20
data_file = 'train_set.csv'
import pandas as pd


def all_data2fold(fold_num, num=20000):
    fold_data = []
    f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
    texts = f['text'].tolist()[:num]
    labels = f['label'].tolist()[:num]

    total = len(labels)

    index = list(range(total))
    np.random.shuffle(index)

    all_texts = []
    all_labels = []
    for i in index:
        all_texts.append(texts[i])
        all_labels.append(labels[i])

    label2id = {}
    for i in range(total):
        label = str(all_labels[i])
        if label not in label2id:
            label2id[label] = [i]
        else:
            label2id[label].append(i)

    all_index = [[] for _ in range(fold_num)]
    for label, data in label2id.items():
        # print(label, len(data))
        batch_size = int(len(data) / fold_num)
        other = len(data) - batch_size * fold_num
        for i in range(fold_num):
            cur_batch_size = batch_size + 1 if i < other else batch_size
            # print(cur_batch_size)
            batch_data = [data[i * batch_size + b] for b in range(cur_batch_size)]
            all_index[i].extend(batch_data)

    batch_size = int(total / fold_num)
    other_texts = []
    other_labels = []
    other_num = 0
    start = 0
    for fold in range(fold_num):
        num = len(all_index[fold])
        texts = [all_texts[i] for i in all_index[fold]]
        labels = [all_labels[i] for i in all_index[fold]]

        if num > batch_size:
            fold_texts = texts[:batch_size]
            other_texts.extend(texts[batch_size:])
            fold_labels = labels[:batch_size]
            other_labels.extend(labels[batch_size:])
            other_num += num - batch_size
        elif num < batch_size:
            end = start + batch_size - num
            fold_texts = texts + other_texts[start: end]
            fold_labels = labels + other_labels[start: end]
            start = end
        else:
            fold_texts = texts
            fold_labels = labels

        assert batch_size == len(fold_labels)

        # shuffle
        index = list(range(batch_size))
        np.random.shuffle(index)

        shuffle_fold_texts = []
        shuffle_fold_labels = []
        for i in index:
            shuffle_fold_texts.append(fold_texts[i])
            shuffle_fold_labels.append(fold_labels[i])

        data = {'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
        fold_data.append(data)

    logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))

    return fold_data


fold_data = all_data2fold(20)
print("结束split data to 20 fold")





print("开始build train, dev, test data")
# build train, dev, test data
fold_id = 19

# dev
dev_data = fold_data[fold_id]

# train
train_texts = []
train_labels = []
for i in range(0, fold_id):
    data = fold_data[i]
    train_texts.extend(data['text'])
    train_labels.extend(data['label'])

train_data = {'label': train_labels, 'text': train_texts}

# test
test_data_file = 'test_a.csv'
f = pd.read_csv(test_data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()
test_data = {'label': [0] * len(texts), 'text': texts}
print("结束build train, dev, test data")






print("开始build vocab")
# build vocab
from collections import Counter
from transformers import BasicTokenizer

basic_tokenizer = BasicTokenizer()


class Vocab():
    def __init__(self, train_data):
        self.min_count = 0
        self.pad = 0
        self.unk = 1
        self._id2word = ['[PAD]', '[UNK]']
        self._id2extword = ['[PAD]', '[UNK]']

        self._id2label = []
        self.target_names = []

        self.build_vocab(train_data)

        reverse = lambda x: dict(zip(x, range(len(x))))
        self._word2id = reverse(self._id2word)
        self._label2id = reverse(self._id2label)

        logging.info("Build vocab: words %d, labels %d." % (self.word_size, self.label_size))

    def build_vocab(self, data):
        self.word_counter = Counter()

        for text in data['text']:
            words = text.split()
            for word in words:
                self.word_counter[word] += 1

        for word, count in self.word_counter.most_common():
            if count >= self.min_count:
                self._id2word.append(word)

        label2name = {0: '科技', 1: '股票', 2: '体育', 3: '娱乐', 4: '时政', 5: '社会', 6: '教育', 7: '财经',
                      8: '家居', 9: '游戏', 10: '房产', 11: '时尚', 12: '彩票', 13: '星座'}

        self.label_counter = Counter(data['label'])

        for label in range(len(self.label_counter)):
            count = self.label_counter[label]
            self._id2label.append(label)
            self.target_names.append(label2name[label])

    def load_pretrained_embs(self, embfile):
        with open(embfile, encoding='utf-8') as f:
            lines = f.readlines()
            items = lines[0].split()
            word_count, embedding_dim = int(items[0]), int(items[1])

        index = len(self._id2extword)
        embeddings = np.zeros((word_count + index, embedding_dim))
        for line in lines[1:]:
            values = line.split()
            self._id2extword.append(values[0])
            vector = np.array(values[1:], dtype='float64')
            embeddings[self.unk] += vector
            embeddings[index] = vector
            index += 1

        embeddings[self.unk] = embeddings[self.unk] / word_count
        embeddings = embeddings / np.std(embeddings)

        reverse = lambda x: dict(zip(x, range(len(x))))
        self._extword2id = reverse(self._id2extword)

        assert len(set(self._id2extword)) == len(self._id2extword)

        return embeddings

    def word2id(self, xs):
        if isinstance(xs, list):
            return [self._word2id.get(x, self.unk) for x in xs]
        return self._word2id.get(xs, self.unk)

    def extword2id(self, xs):
        if isinstance(xs, list):
            return [self._extword2id.get(x, self.unk) for x in xs]
        return self._extword2id.get(xs, self.unk)

    def label2id(self, xs):
        if isinstance(xs, list):
            return [self._label2id.get(x, self.unk) for x in xs]
        return self._label2id.get(xs, self.unk)

    @property
    def word_size(self):
        return len(self._id2word)

    @property
    def extword_size(self):
        return len(self._id2extword)

    @property
    def label_size(self):
        return len(self._id2label)


vocab = Vocab(train_data)
print("结束build vocab")








print("开始build module")
# build module
import torch.nn as nn
import torch.nn.functional as F


class Attention(nn.Module):
    def __init__(self, hidden_size):
        super(Attention, self).__init__()
        self.weight = nn.Parameter(torch.Tensor(hidden_size, hidden_size))
        self.weight.data.normal_(mean=0.0, std=0.05)

        self.bias = nn.Parameter(torch.Tensor(hidden_size))
        b = np.zeros(hidden_size, dtype=np.float32)
        self.bias.data.copy_(torch.from_numpy(b))

        self.query = nn.Parameter(torch.Tensor(hidden_size))
        self.query.data.normal_(mean=0.0, std=0.05)

    def forward(self, batch_hidden, batch_masks):
        # batch_hidden: b x len x hidden_size (2 * hidden_size of lstm)
        # batch_masks:  b x len

        # linear
        key = torch.matmul(batch_hidden, self.weight) + self.bias  # b x len x hidden

        # compute attention
        outputs = torch.matmul(key, self.query)  # b x len

        masked_outputs = outputs.masked_fill((1 - batch_masks).bool(), float(-1e32))

        attn_scores = F.softmax(masked_outputs, dim=1)  # b x len

        # 对于全零向量,-1e32的结果为 1/len, -inf为nan, 额外补0
        masked_attn_scores = attn_scores.masked_fill((1 - batch_masks).bool(), 0.0)

        # sum weighted sources
        batch_outputs = torch.bmm(masked_attn_scores.unsqueeze(1), key).squeeze(1)  # b x hidden

        return batch_outputs, attn_scores


# build word encoder
csv_path = './bert/bert-mini/'
bert_path = '/students/julyedu_554294/NLP/news/bert/bert-mini'
dropout = 0.18

from transformers import BertModel


class WordBertEncoder(nn.Module):
    def __init__(self):
        super(WordBertEncoder, self).__init__()
        self.dropout = nn.Dropout(dropout)

        self.tokenizer = WhitespaceTokenizer()
        self.bert = BertModel.from_pretrained(bert_path)

        self.pooled = False
        logging.info('Build Bert encoder with pooled {}.'.format(self.pooled))

    def encode(self, tokens):
        tokens = self.tokenizer.tokenize(tokens)
        return tokens

    def get_bert_parameters(self):
        no_decay = ['bias', 'LayerNorm.weight']
        optimizer_parameters = [
            {'params': [p for n, p in self.bert.named_parameters() if not any(nd in n for nd in no_decay)],
             'weight_decay': 0.01},
            {'params': [p for n, p in self.bert.named_parameters() if any(nd in n for nd in no_decay)],
             'weight_decay': 0.0}
        ]
        return optimizer_parameters

    def forward(self, input_ids, token_type_ids):
        # input_ids: sen_num x bert_len
        # token_type_ids: sen_num  x bert_len

        # sen_num x bert_len x 256, sen_num x 256
        sequence_output, pooled_output = self.bert(input_ids=input_ids, token_type_ids=token_type_ids)
        #print('sequence_output:', sequence_output)
        #print('pooled_output:', pooled_output)

        if self.pooled:
            reps = pooled_output
        else:
            reps = sequence_output[:, 0, :]  # sen_num x 256

        if self.training:
            reps = self.dropout(reps)

        return reps


class WhitespaceTokenizer():
    """WhitespaceTokenizer with vocab."""

    def __init__(self):
        vocab_file = csv_path + 'vocab.txt'
        self._token2id = self.load_vocab(vocab_file)
        self._id2token = {v: k for k, v in self._token2id.items()}
        self.max_len = 256
        self.unk = 1

        logging.info("Build Bert vocab with size %d." % (self.vocab_size))

    def load_vocab(self, vocab_file):
        f = open(vocab_file, 'r')
        lines = f.readlines()
        lines = list(map(lambda x: x.strip(), lines))
        vocab = dict(zip(lines, range(len(lines))))
        return vocab

    def tokenize(self, tokens):
        assert len(tokens) <= self.max_len - 2
        tokens = ["[CLS]"] + tokens + ["[SEP]"]
        output_tokens = self.token2id(tokens)
        return output_tokens

    def token2id(self, xs):
        if isinstance(xs, list):
            return [self._token2id.get(x, self.unk) for x in xs]
        return self._token2id.get(xs, self.unk)

    @property
    def vocab_size(self):
        return len(self._id2token)


# build sent encoder
sent_hidden_size = 256
sent_num_layers = 2


class SentEncoder(nn.Module):
    def __init__(self, sent_rep_size):
        super(SentEncoder, self).__init__()
        self.dropout = nn.Dropout(dropout)

        self.sent_lstm = nn.LSTM(
            input_size=sent_rep_size,
            hidden_size=sent_hidden_size,
            num_layers=sent_num_layers,
            batch_first=True,
            bidirectional=True
        )

    def forward(self, sent_reps, sent_masks):
        # sent_reps:  b x doc_len x sent_rep_size
        # sent_masks: b x doc_len

        sent_hiddens, _ = self.sent_lstm(sent_reps)  # b x doc_len x hidden*2
        sent_hiddens = sent_hiddens * sent_masks.unsqueeze(2)

        if self.training:
            sent_hiddens = self.dropout(sent_hiddens)

        return sent_hiddens
print("结束build module")






print("开始build model")
# build model
class Model(nn.Module):
    def __init__(self, vocab):
        super(Model, self).__init__()
        self.sent_rep_size = 256
        self.doc_rep_size = sent_hidden_size * 2
        self.all_parameters = {}
        parameters = []
        self.word_encoder = WordBertEncoder()
        bert_parameters = self.word_encoder.get_bert_parameters()

        self.sent_encoder = SentEncoder(self.sent_rep_size)
        self.sent_attention = Attention(self.doc_rep_size)
        parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_encoder.parameters())))
        parameters.extend(list(filter(lambda p: p.requires_grad, self.sent_attention.parameters())))

        self.out = nn.Linear(self.doc_rep_size, vocab.label_size, bias=True)
        parameters.extend(list(filter(lambda p: p.requires_grad, self.out.parameters())))

        if use_cuda:
            self.to(device)

        if len(parameters) > 0:
            self.all_parameters["basic_parameters"] = parameters
        self.all_parameters["bert_parameters"] = bert_parameters

        logging.info('Build model with bert word encoder, lstm sent encoder.')

        para_num = sum([np.prod(list(p.size())) for p in self.parameters()])
        logging.info('Model param num: %.2f M.' % (para_num / 1e6))

    def forward(self, batch_inputs):
        # batch_inputs(batch_inputs1, batch_inputs2): b x doc_len x sent_len
        # batch_masks : b x doc_len x sent_len
        batch_inputs1, batch_inputs2, batch_masks = batch_inputs
        batch_size, max_doc_len, max_sent_len = batch_inputs1.shape[0], batch_inputs1.shape[1], batch_inputs1.shape[2]
        batch_inputs1 = batch_inputs1.view(batch_size * max_doc_len, max_sent_len)  # sen_num x sent_len
        batch_inputs2 = batch_inputs2.view(batch_size * max_doc_len, max_sent_len)  # sen_num x sent_len
        batch_masks = batch_masks.view(batch_size * max_doc_len, max_sent_len)  # sen_num x sent_len

        sent_reps = self.word_encoder(batch_inputs1, batch_inputs2)  # sen_num x sent_rep_size

        sent_reps = sent_reps.view(batch_size, max_doc_len, self.sent_rep_size)  # b x doc_len x sent_rep_size
        batch_masks = batch_masks.view(batch_size, max_doc_len, max_sent_len)  # b x doc_len x max_sent_len
        sent_masks = batch_masks.bool().any(2).float()  # b x doc_len

        sent_hiddens = self.sent_encoder(sent_reps, sent_masks)  # b x doc_len x doc_rep_size
        doc_reps, atten_scores = self.sent_attention(sent_hiddens, sent_masks)  # b x doc_rep_size

        batch_outputs = self.out(doc_reps)  # b x num_labels

        return batch_outputs
    
model = Model(vocab)
print("结束build model")







print("开始build optimizer")
# build optimizer
learning_rate = 2e-4
bert_lr = 2.5e-5
decay = .95
decay_step = 1000
from transformers import AdamW, get_linear_schedule_with_warmup


class Optimizer:
    def __init__(self, model_parameters, steps):
        self.all_params = []
        self.optims = []
        self.schedulers = []

        for name, parameters in model_parameters.items():
            if name.startswith("basic"):
                optim = torch.optim.Adam(parameters, lr=learning_rate)
                self.optims.append(optim)

                l = lambda step: decay ** (step // decay_step)
                scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=l)
                self.schedulers.append(scheduler)
                self.all_params.extend(parameters)
            elif name.startswith("bert"):
                optim_bert = AdamW(parameters, bert_lr, eps=1e-8)
                self.optims.append(optim_bert)

                scheduler_bert = get_linear_schedule_with_warmup(optim_bert, 0, steps)
                self.schedulers.append(scheduler_bert)

                for group in parameters:
                    for p in group['params']:
                        self.all_params.append(p)
            else:
                Exception("no nameed parameters.")

        self.num = len(self.optims)

    def step(self):
        for optim, scheduler in zip(self.optims, self.schedulers):
            optim.step()
            scheduler.step()
            optim.zero_grad()

    def zero_grad(self):
        for optim in self.optims:
            optim.zero_grad()

    def get_lr(self):
        lrs = tuple(map(lambda x: x.get_lr()[-1], self.schedulers))
        lr = ' %.5f' * self.num
        res = lr % lrs
        return res
print("结束build optimizer")









print("开始build dataset")
def sentence_split(text, vocab, max_sent_len=256, max_segment=16):
    words = text.strip().split()
    document_len = len(words)

    index = list(range(0, document_len, max_sent_len))
    index.append(document_len)

    segments = []
    for i in range(len(index) - 1):
        segment = words[index[i]: index[i + 1]]
        assert len(segment) > 0
        segment = [word if word in vocab._id2word else '<UNK>' for word in segment]
        segments.append([len(segment), segment])

    assert len(segments) > 0
    if len(segments) > max_segment:
        segment_ = int(max_segment / 2)
        return segments[:segment_] + segments[-segment_:]
    else:
        return segments


def get_examples(data, word_encoder, vocab, max_sent_len=256, max_segment=8):
    label2id = vocab.label2id
    examples = []

    for text, label in zip(data['text'], data['label']):
        # label
        id = label2id(label)

        # words
        sents_words = sentence_split(text, vocab, max_sent_len-2, max_segment)
        doc = []
        for sent_len, sent_words in sents_words:
            token_ids = word_encoder.encode(sent_words)
            sent_len = len(token_ids)
            token_type_ids = [0] * sent_len
            doc.append([sent_len, token_ids, token_type_ids])
        examples.append([id, len(doc), doc])

    logging.info('Total %d docs.' % len(examples))
    return examples
print("结束build dataset")








print("开始build loader")
# build loader

def batch_slice(data, batch_size):
    batch_num = int(np.ceil(len(data) / float(batch_size)))
    for i in range(batch_num):
        cur_batch_size = batch_size if i < batch_num - 1 else len(data) - batch_size * i
        docs = [data[i * batch_size + b] for b in range(cur_batch_size)]

        yield docs


def data_iter(data, batch_size, shuffle=True, noise=1.0):
    """
    randomly permute data, then sort by source length, and partition into batches
    ensure that the length of  sentences in each batch
    """

    batched_data = []
    if shuffle:
        np.random.shuffle(data)

        lengths = [example[1] for example in data]
        noisy_lengths = [- (l + np.random.uniform(- noise, noise)) for l in lengths]
        sorted_indices = np.argsort(noisy_lengths).tolist()
        sorted_data = [data[i] for i in sorted_indices]
    else:
        sorted_data =data
        
    batched_data.extend(list(batch_slice(sorted_data, batch_size)))

    if shuffle:
        np.random.shuffle(batched_data)

    for batch in batched_data:
        yield batch
print("结束build loader")









print("开始some function")
# some function
from sklearn.metrics import f1_score, precision_score, recall_score


def get_score(y_ture, y_pred):
    y_ture = np.array(y_ture)
    y_pred = np.array(y_pred)
    f1 = f1_score(y_ture, y_pred, average='macro') * 100
    p = precision_score(y_ture, y_pred, average='macro') * 100
    r = recall_score(y_ture, y_pred, average='macro') * 100

    return str((reformat(p, 2), reformat(r, 2), reformat(f1, 2))), reformat(f1, 2)


def reformat(num, n):
    return float(format(num, '0.' + str(n) + 'f'))
print("结束some function")







print("开始build trainer")
# build trainer

import time
from sklearn.metrics import classification_report

clip = 5.0
epochs = 20
early_stops = 6
log_interval = 150

test_batch_size = 64
train_batch_size = 64

save_model = './bert_submission_0306_12_change_canshu_taidaxiugai_kuoda2.bin'
save_test = './bert_submission_0306_12_change_canshu_taidaxiugai_kuoda2.csv'

class Trainer():
    def __init__(self, model, vocab):
        self.model = model
        self.report = True
        
        self.train_data = get_examples(train_data, model.word_encoder, vocab)
        self.batch_num = int(np.ceil(len(self.train_data) / float(train_batch_size)))
        self.dev_data = get_examples(dev_data, model.word_encoder, vocab)
        self.test_data = get_examples(test_data, model.word_encoder, vocab)

        # criterion
        self.criterion = nn.CrossEntropyLoss()

        # label name
        self.target_names = vocab.target_names

        # optimizer
        self.optimizer = Optimizer(model.all_parameters, steps=self.batch_num * epochs)

        # count
        self.step = 0
        self.early_stop = -1
        self.best_train_f1, self.best_dev_f1 = 0, 0
        self.last_epoch = epochs

    def train(self):
        logging.info('Start training...')
        for epoch in range(1, epochs + 1):
            train_f1 = self._train(epoch)

            dev_f1 = self._eval(epoch)

            if self.best_dev_f1 <= dev_f1:
                logging.info(
                    "Exceed history dev = %.2f, current dev = %.2f" % (self.best_dev_f1, dev_f1))
                torch.save(self.model.state_dict(), save_model)

                self.best_train_f1 = train_f1
                self.best_dev_f1 = dev_f1
                self.early_stop = 0
            else:
                self.early_stop += 1
                if self.early_stop == early_stops:
                    logging.info(
                        "Eearly stop in epoch %d, best train: %.2f, dev: %.2f" % (
                            epoch - early_stops, self.best_train_f1, self.best_dev_f1))
                    self.last_epoch = epoch
                    break
    def test(self):
        self.model.load_state_dict(torch.load(save_model))
        self._eval(self.last_epoch + 1, test=True)

    def _train(self, epoch):
        self.optimizer.zero_grad()
        self.model.train()

        start_time = time.time()
        epoch_start_time = time.time()
        overall_losses = 0
        losses = 0
        batch_idx = 1
        y_pred = []
        y_true = []
        for batch_data in data_iter(self.train_data, train_batch_size, shuffle=True):
            torch.cuda.empty_cache()
            batch_inputs, batch_labels = self.batch2tensor(batch_data)
            batch_outputs = self.model(batch_inputs)
            loss = self.criterion(batch_outputs, batch_labels)
            loss.backward()

            loss_value = loss.detach().cpu().item()
            losses += loss_value
            overall_losses += loss_value

            y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
            y_true.extend(batch_labels.cpu().numpy().tolist())

            nn.utils.clip_grad_norm_(self.optimizer.all_params, max_norm=clip)
            for optimizer, scheduler in zip(self.optimizer.optims, self.optimizer.schedulers):
                optimizer.step()
                scheduler.step()
            self.optimizer.zero_grad()

            self.step += 1

            if batch_idx % log_interval == 0:
                elapsed = time.time() - start_time

                lrs = self.optimizer.get_lr()
                logging.info(
                    '| epoch {:3d} | step {:3d} | batch {:3d}/{:3d} | lr{} | loss {:.4f} | s/batch {:.2f}'.format(
                        epoch, self.step, batch_idx, self.batch_num, lrs,
                        losses / log_interval,
                        elapsed / log_interval))

                losses = 0
                start_time = time.time()

            batch_idx += 1

        overall_losses /= self.batch_num
        during_time = time.time() - epoch_start_time

        # reformat
        overall_losses = reformat(overall_losses, 4)
        score, f1 = get_score(y_true, y_pred)

        logging.info(
            '| epoch {:3d} | score {} | f1 {} | loss {:.4f} | time {:.2f}'.format(epoch, score, f1,
                                                                                  overall_losses,
                                                                                  during_time))
        if set(y_true) == set(y_pred) and self.report:
            report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
            logging.info('\n' + report)

        return f1

    def _eval(self, epoch, test=False):
        self.model.eval()
        start_time = time.time()
        data = self.test_data if test else self.dev_data
        y_pred = []
        y_true = []
        with torch.no_grad():
            for batch_data in data_iter(data, test_batch_size, shuffle=False):
                torch.cuda.empty_cache()
                batch_inputs, batch_labels = self.batch2tensor(batch_data)
                batch_outputs = self.model(batch_inputs)
                y_pred.extend(torch.max(batch_outputs, dim=1)[1].cpu().numpy().tolist())
                y_true.extend(batch_labels.cpu().numpy().tolist())

            score, f1 = get_score(y_true, y_pred)

            during_time = time.time() - start_time
            
            if test:
                df = pd.DataFrame({'label': y_pred})
                df.to_csv(save_test, index=False, sep=',')
            else:
                logging.info(
                    '| epoch {:3d} | dev | score {} | f1 {} | time {:.2f}'.format(epoch, score, f1,
                                                                              during_time))
                if set(y_true) == set(y_pred) and self.report:
                    report = classification_report(y_true, y_pred, digits=4, target_names=self.target_names)
                    logging.info('\n' + report)

        return f1

    def batch2tensor(self, batch_data):
        '''
            [[label, doc_len, [[sent_len, [sent_id0, ...], [sent_id1, ...]], ...]]
        '''
        batch_size = len(batch_data)
        doc_labels = []
        doc_lens = []
        doc_max_sent_len = []
        for doc_data in batch_data:
            doc_labels.append(doc_data[0])
            doc_lens.append(doc_data[1])
            sent_lens = [sent_data[0] for sent_data in doc_data[2]]
            max_sent_len = max(sent_lens)
            doc_max_sent_len.append(max_sent_len)

        max_doc_len = max(doc_lens)
        max_sent_len = max(doc_max_sent_len)

        batch_inputs1 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
        batch_inputs2 = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.int64)
        batch_masks = torch.zeros((batch_size, max_doc_len, max_sent_len), dtype=torch.float32)
        batch_labels = torch.LongTensor(doc_labels)

        for b in range(batch_size):
            for sent_idx in range(doc_lens[b]):
                sent_data = batch_data[b][2][sent_idx]
                for word_idx in range(sent_data[0]):
                    batch_inputs1[b, sent_idx, word_idx] = sent_data[1][word_idx]
                    batch_inputs2[b, sent_idx, word_idx] = sent_data[2][word_idx]
                    batch_masks[b, sent_idx, word_idx] = 1

        if use_cuda:
            batch_inputs1 = batch_inputs1.to(device)
            batch_inputs2 = batch_inputs2.to(device)
            batch_masks = batch_masks.to(device)
            batch_labels = batch_labels.to(device)

        return (batch_inputs1, batch_inputs2, batch_masks), batch_labels
print("结束build trainer")







print("开始train")
# train
trainer = Trainer(model, vocab)
trainer.train()
print("结束train")







print("开始test")
# test
trainer.test()
print("结束test")


print("程序结束")

logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')
logging.info("Use cuda: %s, gpu id: %d.", use_cuda, gpu)

score:0.9221

比赛源自:阿里云天池大赛 - 零基础入门NLP - 新闻文本分类

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1541832.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nodejs+vue高校社团管理小程序的设计与实现python-flask-django-php

相比于以前的传统手工管理方式&#xff0c;智能化的管理方式可以大幅降低学校的运营人员成本&#xff0c;实现了高校社团管理的标准化、制度化、程序化的管理&#xff0c;有效地防止了高校社团管理的随意管理&#xff0c;提高了信息的处理速度和精确度&#xff0c;能够及时、准…

信号处理--使用EEGNet进行BCI脑电信号的分类

目录 理论 工具 方法实现 代码获取 理论 EEGNet作为一个比较成熟的框架&#xff0c;在BCI众多任务中&#xff0c;表现出不俗的性能。EEGNet 的主要特点包括&#xff1a;1&#xff09;框架相对比较简单紧凑 2&#xff09;适合许多的BCI脑电分析任务 3&#xff09;使用两种卷…

CHAT~(持续更新)

CHAT&#xff08;持续更新&#xff09; 实现一个ChatGPT创建API设计页面布局业务操作技术架构 编码其他 实现一个ChatGPT 创建API 最简单也最需要信息的一步 继续往下做的前提 此处省略&#xff0c;想要获取接口创建方式联系 设计 页面布局 按照官网布局 业务操作 注册登…

Vue 3 + TypeScript + Vite的现代前端项目框架

随着前端开发技术的飞速发展&#xff0c;Vue 3、TypeScript 和 Vite 构成了现代前端开发的强大组合。这篇博客将指导你如何从零开始搭建一个使用Vue 3、TypeScript以及Vite的前端项目&#xff0c;帮助你快速启动一个性能卓越且类型安全的现代化Web应用。 Vue 3 是一款渐进式Jav…

快速入门go语言

环境搭建 编译器安装 1、编译器下载地址 2、打开命令行模式&#xff0c;输入go version ide安装 ide下载地址 依赖管理 goproxy 1、goproxy代理地址 // 阿里云 https://mirrors.aliyun.com/goproxy // 微软 https://goproxy.io // 七牛 https://goproxy.cn 2、ide配置g…

初识 Redis 浅谈分布式

目 录 一.认识 Redis二.浅谈分布式单机架构分布式是什么数据库分离和负载均衡理解负载均衡数据库读写分离引入缓存数据库分库分表引入微服务 三.概念补充四.分布式小结 一.认识 Redis 在 Redis 官网我们可以看到介绍 翻译过来就是&#xff1a;数以百万计的开发人员用作缓存、…

阿里云倚天云服务器怎么样?如何收费?

阿里云倚天云服务器CPU采用倚天710处理器&#xff0c;租用倚天服务器c8y、g8y和r8y可以享受优惠价格&#xff0c;阿里云服务器网aliyunfuwuqi.com整理倚天云服务器详细介绍、倚天710处理器性能测评、CIPU架构优势、倚天服务器使用场景及生态支持&#xff1a; 阿里云倚天云服务…

人工智能之Tensorflow批标准化

批标准化&#xff08;Batch Normalization,BN&#xff09;是为了克服神经网络层数加深导致难以训练而诞生的。 随着神经网络的深度加深&#xff0c;训练会越来越困难&#xff0c;收敛速度会很慢&#xff0c;常常会导致梯度消失问题。梯度消失问题是在神经网络中&#xff0c;当前…

ffmpeg实现媒体流解码

本期主要讲解怎么将MP4媒体流的视频解码为yuv,音频解码为pcm数据;在此之前我们要先了解解复用和复用的概念; 解复用:像mp4是由音频和视频组成的(其他内容流除外);将MP4的流拆分成视频流(h264或h265等)和音频流(AAC或mp3等); 复用:就是将音频和视频打包成MP4或者fl…

数据可视化-ECharts Html项目实战(6)

在之前的文章中&#xff0c;我们学习了如何设置散点图、雷达图。想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢数据可视化-ECharts Html项目实战&#xff08;5&a…

网络分类简述与数据链路层协议(PPP)

实验拓扑 实验要求 1、R1和R2使用PPP链路直连&#xff0c;R2和R3把2条PPP链路捆绑为PPP MP直连按照图示配置IP地址 2、R2对R1的PPP进行单向chap验证 3、R2和R3的PPP进行双向chap验证 实验思路 给R1、R2的S3/0/0接口配置IP地址&#xff0c;已给出网段192.168.1.0/24R2作为主…

人工智能之Tensorflow变量作用域

在TensoFlow中有两个作用域&#xff08;Scope&#xff09;&#xff0c;一个时name_scope ,另一个是variable_scope。variable_scope主要给variable_name加前缀&#xff0c;也可以给op_name加前缀&#xff1b;name_scope给op_name加前缀。 variable_scope 通过所给的名字创建或…

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别

分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别 目录 分类预测 | Matlab实现MTF-CNN-Mutilhead-Attention马尔可夫转移场卷积网络多头注意力机制多特征分类预测/故障识别分类效果基本介绍模型描述程序设计参考…

STM32学习笔记(3_2)- GPIO输入和C语言

无人问津也好&#xff0c;技不如人也罢&#xff0c;都应静下心来&#xff0c;去做该做的事。 最近在学STM32&#xff0c;所以也开贴记录一下主要内容&#xff0c;省的过目即忘。视频教程为江科大&#xff08;改名江协科技&#xff09;&#xff0c;网站jiangxiekeji.com 本期介…

idea maven配置

修改maven的路径&#xff08;使用本地的Maven&#xff09;&#xff0c;以及修改settings文件的位置和本地仓库的位置。 -DarchetypeCataloginternal 配置阿里云镜像&#xff08;在setting.xml文件中配置&#xff09; <!-- 配置阿里云 --> <mirror> <id>…

javase day11笔记

第十一天课堂笔记 构造代码块 { } 给 所有对象 共性特点 进行初始化操作 创建对象时在堆区对象中存放实例变量,同时执行构造代码块 执行顺序:静态代码块—>非静态代码块—>构造方法 继承★★★ 将多个类中相同的实例变量和实例方法 , 单独存放到一个类中,成为父类…

政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: TensorFlow与Keras实战演绎机器学习 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 前言 TensorFlow Extended&#xff08;TFX&a…

代数结构与数理逻辑:3.环

图1 环 14.1 环的定义与性质 环&#xff1a;代数系统 [ R ; ; ∗ ] [R;;*] [R;;∗]&#xff0c;其中&#xff0c;*为定义在 R R R上的二元运算&#xff0c;满足下述条件&#xff0c;对任意 a , b , c ∈ R a,b,c\in R a,b,c∈R, ​ 可结合、交换&#xff0c;且有单位元、逆元…

【Redis教程0x04】详解Redis的4个高级数据类型

引言 在【Redis教程0x03】中&#xff0c;我们介绍了Redis中常用的5种基础数据类型&#xff0c;我们再来回顾一下它们的使用场景&#xff1a; String&#xff1a;存储对象、url、计数、分布式锁&#xff1b;List&#xff1a;消息队列&#xff1b;Hash&#xff1a;存储对象、购…

2024年大模型面试准备(二):LLM容易被忽略的Tokenizer与Embedding

分词和嵌入一直是LM被忽略的一部分。随着各大框架如HF的不断完善&#xff0c;大家对tokenization和embedding的重视程度越来越低&#xff0c;到现在初学者大概只能停留在调用tokenizer.encode这样的程度了。 知其然不知其所以然是很危险的。比如你要调用ChatGPT的接口&#xf…